(2004•四川)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,G是上一點,且,連接AG交PD于F,連接BF,若PD=,tan∠BFE=
求:(1)∠C的度數(shù);
(2)QH的長.

【答案】分析:(1)連接OP,易得∠BAG=30°,應(yīng)利用30°的正切值,以及tan∠BFE的值得到用一條線段表示出的AE,EF,EB以及OE,OP等.那么就能表示出∠POA的余弦值,即可求得相應(yīng)的度數(shù),進而求解;
(2)易得PE=3,那么利用特殊的三角函數(shù)值即可求得CP,OP,利用切割線定理可求得CA長.進而求得PQ,QB長.利用切割線定理可求得QH長.
解答:解:(1)連接OP,則∠OPC=90°

∴∠BAF=30°
設(shè)EF=x,則AE=x
∵tan∠BFE=
∴BE=3x
∴cos∠POA=OE:OP=
∴∠POA=60°
∵CP是切線
∴∠OPC=90°
∴∠C=30°;

(2)∵PD⊥AB,PD=
∴PE=3,
∴CP=6,OP=6,
那么AB=2OP=12,
∵PC2=AC×BC,
∴AC=6,
∴BC=18,
∴QB=9,CQ=9,
∴PQ=3
∵PQ2=QH×QB,
∴QH=3.
點評:本題用到的知識點為:利用三角函數(shù)值來判斷角的度數(shù);垂直于弦的直徑平分弦;切割線定理等.考查學生綜合運用知識能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•四川)已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A和B(4,0),與y軸交于點C(0,8),其對稱軸為x=1.
(1)求此拋物線的解析式;
(2)過A、B、C三點作⊙O′與y軸的負半軸交于點D,求經(jīng)過原點O且與直線AD垂直(垂足為E)的直線OE的方程;
(3)設(shè)⊙O′與拋物線的另一個交點為P,直線OE與直線BC的交點為Q,直線x=m與拋物線的交點為R,直線x=m與直線OE的交點為S.是否存在整數(shù)m,使得以點P、Q、R、S為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2004•四川)已知反比例函數(shù)(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省中考數(shù)學試卷(解析版) 題型:解答題

(2004•四川)已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A和B(4,0),與y軸交于點C(0,8),其對稱軸為x=1.
(1)求此拋物線的解析式;
(2)過A、B、C三點作⊙O′與y軸的負半軸交于點D,求經(jīng)過原點O且與直線AD垂直(垂足為E)的直線OE的方程;
(3)設(shè)⊙O′與拋物線的另一個交點為P,直線OE與直線BC的交點為Q,直線x=m與拋物線的交點為R,直線x=m與直線OE的交點為S.是否存在整數(shù)m,使得以點P、Q、R、S為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省中考數(shù)學試卷(解析版) 題型:解答題

(2004•四川)已知反比例函數(shù)(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省成都市中考數(shù)學試卷(解析版) 題型:解答題

(2004•四川)已知反比例函數(shù)(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)

查看答案和解析>>

同步練習冊答案