Processing math: 100%
13.如圖,AB=AF,BC=FE,∠B=∠F,AD⊥CE.
(1)求證:D是CE的中點;
(2)連接BF后,還能得出什么結論?請你寫出兩個(不要求證明).

分析 (1)利用SAS判定△ABC≌△AFE,從而得出AC=AE,再根據(jù)等腰三角形的三線合一的性質(zhì)求得D是CE的中點;
(2)根據(jù)題意得出結論即可.

解答 (1)證明:在△ABC和△AFE中,
{AB=AFB=FBC=EF,
∴△ABC≌△AFE.
∴AC=AE.
又∵AD⊥CE,
∴CD=DE.
(2)結論:AD⊥BF,AD平分BF,BF∥CE.

點評 本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

3.如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(4,3),一次函數(shù)的圖象與y軸交于點B,且OA=OB.
(1)求這兩個函數(shù)的關系式;
(2)兩直線與x軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

4.若二次函數(shù)y=mxm2m的圖象開口向下,則m=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.把下列各數(shù)在數(shù)軸上表示出來,再按照從小到大的順序用“<”連接起來
0,+3.5,-3,-112,-(-5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.一少年問一長者今年多少歲?長者對少年說:“等你到我這樣歲數(shù)時,我已是60歲的老頭;而當我像你一樣大時,你還是個6歲的頑童.”

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.已知m>0,n>0,且2m-mn-5n=0,求m3n+mnm+2n2mn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.如圖,在平面直角坐標系中,正方形ABCD的邊長為2,拋物線y=ax2+bx+c經(jīng)過A,B兩點,且與x軸的一個交點坐標是(-29,0),求這個拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖,在Rt△ABC中,∠C=90°,AD平分∠A,交邊BC于點D,BD=2CD,求證:BC=3•AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.化簡(aa23a-2aa29)÷a2a2+6a+9

查看答案和解析>>

同步練習冊答案