如圖,在矩形ABCD的對角線AC上有一動點O,以OA為半徑作⊙O交AD、AC于點E、F,連結CE.
(1)若CE恰為⊙O的切線,求證:∠ACB=∠DCE;
(2)在(1)的條件下,若AB=數(shù)學公式,BC=2,求⊙O的半徑.

(1)證明:連接OE,
∵CE是⊙O的切線,
∴OE⊥EC,
∴∠DEC+∠AEO=90°,
∵OE=OA,
∴∠AEO=∠EAO,
∵四邊形ABCD是矩形,
∴AD∥BC,∠D=90°,
∴∠ACB=∠EAO,∠DCE+∠DEC=90°,
∴∠ACB=∠DCE;

(2)解:連接EF,
∵∠ACB=∠DCE,∠B=∠D=90°,
∴△ABC∽△EDC,
,
∵AB=CD=,BC=2,
∴DE=1,
∴AE=DE,
∵AF為直徑,
∴EF⊥AD,
∴EF∥CD,
∴AF=CF,
在Rt△ABC中,AB=,BC=2,
∴AC=,
∴⊙O的半徑OA=AF=AC=
分析:(1)首先連接OE,由CE恰為⊙O的切線,易證得四邊形ABCD是矩形,然后由等角的余角相等,證得:∠ACB=∠DCE;
(2)首先連接EF,易證得△ABC∽△EDC,然后由相似三角形的對應邊成比例,求得DE的長,由勾股定理,求得AC的長,繼而求得答案.
點評:此題考查了切線的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設CE=x,BF=y.
(1)求y與x的函數(shù)關系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習冊答案