(2010•淄博)如圖,D是半徑為R的⊙O上一點,過點D作⊙O的切線交直徑AB的延長線于點C,下列四個條件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=
3
R.其中,使得BC=R的有(  )
分析:此題的四個結(jié)論都需要構(gòu)造直角三角形來求證,連接OD,若BC=R,那么OC=2OD,即∠C=30°,可據(jù)此對四個結(jié)論進行判斷.
解答:解:連接OD,則OD⊥CD;
①∵AD=DC,
∴∠A=∠C,
∴∠DOC=2∠A=2∠C;
在Rt△ODC中,∠C+∠DOC=90°,
即∠A=∠C=30°,
∴OC=2OD,OB+BC=2OD,由于OB=OD,故BC=OB=R,①正確;
②由①可知:當∠A=30°時,可以得到BC=R,故②正確;
③∠ADC=120°,則∠A=∠C=
1
2
(180°-∠ADC)=30°,
由①②知,當∠A=30°時,BC=R成立,故③正確;
④DC=
3
R,則tan∠C=
OD
CD
=
3
3
,即∠A=∠C=30°,
故④正確;
所以四個結(jié)論都能是BC=R成立,
故選D.
點評:此題主要考查的是切線的性質(zhì)、圓周角定理以及解直角三角形的應用,難度不大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:填空題

(2010•淄博)如圖,在直角坐標系中,以坐標原點為圓心、半徑為1的⊙O與x軸交于A,B兩點,與y軸交于C,D兩點.E為⊙O上在第一象限的某一點,直線BF交⊙O于點F,且∠ABF=∠AEC,則直線BF對應的函數(shù)表達式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•淄博)如圖,在直角坐標系中,以坐標原點為圓心、半徑為1的⊙O與x軸交于A,B兩點,與y軸交于C,D兩點.E為⊙O上在第一象限的某一點,直線BF交⊙O于點F,且∠ABF=∠AEC,則直線BF對應的函數(shù)表達式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省淄博市中考數(shù)學試卷(解析版) 題型:填空題

(2010•淄博)如圖,在直角坐標系中,以坐標原點為圓心、半徑為1的⊙O與x軸交于A,B兩點,與y軸交于C,D兩點.E為⊙O上在第一象限的某一點,直線BF交⊙O于點F,且∠ABF=∠AEC,則直線BF對應的函數(shù)表達式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(03)(解析版) 題型:選擇題

(2010•淄博)如圖所示,把一長方形紙片沿MN折疊后,點D,C分別落在D′,C′的位置.若∠AMD′=36°,則∠NFD′等于( )

A.144°
B.126°
C.108°
D.72°

查看答案和解析>>

同步練習冊答案