【題目】某大學(xué)生利用暑假40天社會(huì)實(shí)踐參與了一家網(wǎng)店經(jīng)營(yíng),了解到一種成本為20/件的新型商品在第x天銷(xiāo)售的相關(guān)信息如下表所示。

銷(xiāo)售量p(件)

P=50—x


銷(xiāo)售單價(jià)q(元/件)

當(dāng)1≤x≤20時(shí),
當(dāng)21≤x≤40時(shí),

1)請(qǐng)計(jì)算第幾天該商品的銷(xiāo)售單價(jià)為35/件?

2)求該網(wǎng)店第x天獲得的利潤(rùn)y關(guān)于x的函數(shù)關(guān)系式。

3)這40天中該網(wǎng)店第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】1)第10天或第25天該商品的銷(xiāo)售單價(jià)為35/件(23)這40天中該網(wǎng)店第21天獲得的利潤(rùn)最大?最大利潤(rùn)是725

【解析】

解:(1)當(dāng)1≤x≤20時(shí),令,解得;;

當(dāng)21≤x≤40時(shí),令,解得;

10天或第25天該商品的銷(xiāo)售單價(jià)為35/件。

2)當(dāng)1≤x≤20時(shí),;

當(dāng)21≤x≤40時(shí),。

∴y關(guān)于x的函數(shù)關(guān)系式為。

3)當(dāng)1≤x≤20時(shí),,

,當(dāng)x=15時(shí),y有最大值y1,且y1=612.5

當(dāng)21≤x≤40時(shí),∵262500隨著x的增大而減小,

當(dāng)x=21時(shí),有最大值y2,且

∵y1y2,

40天中該網(wǎng)店第21天獲得的利潤(rùn)最大?最大利潤(rùn)是725元。

1)分別將q=35代入銷(xiāo)售單價(jià)關(guān)于x的函數(shù)關(guān)系式,求出x即可。

2)應(yīng)用利潤(rùn)=銷(xiāo)售收入-銷(xiāo)售成本列式即可。

3)應(yīng)用二次函數(shù)和反比例函數(shù)的性質(zhì),分別求出最大值比較即得所求。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分9分)為了掌握我市中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行調(diào)研,命題教師將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿(mǎn)分為160分)分為5組:第一組85~10;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:

(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?并將頻數(shù)分布直方圖補(bǔ)充完整;

(2)若將得分轉(zhuǎn)化為等級(jí),規(guī)定:得分低于100分評(píng)為“D”,100~130分評(píng)為“C”,130~145分評(píng)為“B”,145~160分評(píng)為“A”,那么該年級(jí)1500名考生中,考試成績(jī)?cè)u(píng)為“B”的學(xué)生大約有多少名?

(3)如果第一組只有一名是女生,第五組只有一名是男生,針對(duì)考試成績(jī)情況,命題教師決定從第一組、第五組分別隨機(jī)選出一名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形中有3個(gè)角、3條邊共6個(gè)元素,由其中的已知元素,求出所有未知元素的過(guò)程,叫做解三角形.

已知△ABC中,AB,∠B45°,BC1,解△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC30°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(30α150)得到△AB′C′B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B′、C′,連接BC′,BCAC、AB′相交于點(diǎn)E、F

(1)當(dāng)α70時(shí),∠ABC′_____°,∠ACB′______°

(2)求證:BC′CB′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=a( x+1 )2-4a(a<0)與x軸交于點(diǎn)A、B(A在B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,連接BD交拋物線的對(duì)稱(chēng)軸于點(diǎn)E,連接BC、CE

(1)拋物線頂點(diǎn)坐標(biāo)為 (用含a的代數(shù)式表示),A點(diǎn)坐標(biāo)為 ,

(2)當(dāng)△DCE的面積為時(shí),求a的值;

(3)當(dāng)△BCE為直角三角形時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點(diǎn)為BAC經(jīng)過(guò)圓心O并與圓相交于點(diǎn)D、C,過(guò)C作直線CEAB,交AB的延長(zhǎng)線于點(diǎn)E

1)求證:CB平分∠ACE

2)若BE=3CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué)們都學(xué)習(xí)過(guò)《幾何》課本第三冊(cè)第199頁(yè)的第11題,它是這樣的:如圖,A為⊙O的直徑EF上的一點(diǎn),OB是和這條直徑垂直的半徑,BA和⊙O相交于另一點(diǎn)C,過(guò)點(diǎn)C的切線和EF的延長(zhǎng)線相交于點(diǎn)D,求證:DA=DC.

(1)現(xiàn)將圖1中的直徑EF所在直線進(jìn)行平行移動(dòng)到圖2所示的位置,此時(shí)OB與EF垂直相交于H,其它條件不變.

①求證:DA=DC;

②當(dāng)DF:EF=1:8,且DF=時(shí),求ABAC的值.

(2)將圖2中的EF所在直線繼續(xù)向上平行移動(dòng)到圖3所示的位置,使EF與OB的延長(zhǎng)線垂直相交于H,A為EF上異于H的一點(diǎn),且AH小于⊙O的切線交EF于D,試猜想:DA=DC是否仍然成立?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+cy軸交于點(diǎn)A(0,2),對(duì)稱(chēng)軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對(duì)稱(chēng)軸左側(cè),BC=6.

(1)求此拋物線的解析式.

(2)點(diǎn)Px軸上,直線CP將△ABC面積分成2:3兩部分,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操場(chǎng)上有三根測(cè)桿ABMNXY,MNXY,其中測(cè)桿AB在太陽(yáng)光下某一時(shí)刻的影子為BC(如圖中粗線).

(1)畫(huà)出測(cè)桿MN在同一時(shí)刻的影子NP(用粗線表示),并簡(jiǎn)述畫(huà)法;

(2)若在同一時(shí)刻測(cè)桿XY的影子的頂端恰好落在點(diǎn)B處,畫(huà)出測(cè)桿XY所在的位置(用實(shí)線表示),并簡(jiǎn)述畫(huà)法.

查看答案和解析>>

同步練習(xí)冊(cè)答案