【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1

1)直接寫出四邊形ABCD的面積和周長(zhǎng);

2)求證:∠BCD=90°.

【答案】1)四邊形ABCD的面積為14.5,四邊形ABCD的周長(zhǎng)是3;(2)證明見(jiàn)解析.

【解析】

1)用四邊形ABCD所在長(zhǎng)方形的面積減去4個(gè)小三角形的面積,列出算式計(jì)算即可求得四邊形ABCD的面積;利用勾股定理分別求出AB、BCCD、AD,即可求得四邊形ABCD的周長(zhǎng);

2)求出BD2,利用勾股定理的逆定理即可證明;

1)四邊形ABCD的面積=5×53×1÷24×2÷25×1÷25×1÷2=14.5;

由勾股定理得AB,BC2,CD,AD,

故四邊形ABCD的周長(zhǎng)是23;

2)連接BD

BD2,BC2+CD2=20+5=25

BC2+CD2=BD2,

∴△BCD是直角三角形,且∠BCD=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析。下面給出了部分信息.

a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:

(說(shuō)明:成績(jī)80分及以上為優(yōu)秀,7079分為良好,6069分為合格,60分以下為不合格)

b.甲校成績(jī)?cè)?/span>70x<80這一組的是:70 70 70 71 72 73 73 73 74 75 76 77 78

c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:

根據(jù)以上信息,回答下列問(wèn)題:

(1)寫出表中n的值;

(2)在此次測(cè)試中,某學(xué)生的成績(jī)是74,在他所屬學(xué)校排在前20,由表中數(shù)據(jù)可知該學(xué)生是___校的學(xué)生(填“甲”或“乙”),理由是___;

(3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店出售一種商品,其原價(jià)為元,現(xiàn)有兩種調(diào)價(jià)方案:一種是先提價(jià),在此基礎(chǔ)上又降價(jià);另一種是先降價(jià) 在此基礎(chǔ)上又提價(jià).

1)用這兩種方案調(diào)價(jià)的結(jié)果是否一樣?

2)兩種調(diào)價(jià)方案改為:一種是提價(jià);另一種是先提價(jià),在此基礎(chǔ)上又提價(jià),這兩種調(diào)價(jià)方案結(jié)果是否一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示.

1)作出△ABC關(guān)于軸對(duì)稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);

2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);

3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對(duì)稱?若是,請(qǐng)用實(shí)線條畫出對(duì)稱軸。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將二次函數(shù)y=x2-m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1,另有一次函數(shù)y=x+b的圖象記為y2,則以下說(shuō)法:

①當(dāng)m=1,且y1y2恰好有三個(gè)交點(diǎn)時(shí)b有唯一值為1;

②當(dāng)b=2,且y1y2恰有兩個(gè)交點(diǎn)時(shí),m>4或0<m;

③當(dāng)m=-b時(shí),y1y2一定有交點(diǎn);

④當(dāng)m=b時(shí),y1y2至少有2個(gè)交點(diǎn),且其中一個(gè)為(0,m).

其中正確說(shuō)法的序號(hào)為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=kx+bk≠0)的圖象經(jīng)過(guò)點(diǎn)B2,0),與函數(shù)y=2x的圖象交于點(diǎn)A,則不等式0kx+b2x的解集為( �。�

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過(guò)50噸時(shí),每噸的成本y(萬(wàn)元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系的圖象如圖所示.

1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

2)當(dāng)生產(chǎn)這種產(chǎn)品每噸的成本為7萬(wàn)元時(shí),求該產(chǎn)品的生產(chǎn)數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線 a0)經(jīng)過(guò)原點(diǎn),頂點(diǎn)為A(h,k)(h0).

(1)當(dāng)h=1,k=2時(shí),求拋物線的解析式;

(2)若拋物線(t0)也經(jīng)過(guò)A點(diǎn),求a與t之間的關(guān)系式;

(3)當(dāng)點(diǎn)A在拋物線上,且-2h<1時(shí),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案