(2011•武漢模擬)如圖,已知等腰Rt△ABC,∠ACB=90°,AC=BC,D為BC邊上一動(dòng)點(diǎn),BC=nDC,AD⊥EC于點(diǎn)E,延長(zhǎng)BE交AC與點(diǎn)F.
(1)若n=3,則=______,=______;
(2)若n=2,求證:AF=2FC;
(3)當(dāng)n=______
【答案】分析:(1)通過(guò)證明△CED∽△ACD,根據(jù)相似比即可求得CE:DE的長(zhǎng),同理可求得AE:DE的值.
(2)根據(jù)已知可求得△GED∽△AFE,根據(jù)相似比即可求得AF,F(xiàn)C的關(guān)系.
(3)要使AF=CF,必需n2=(n-1):n.
解答:(1)由題意得,∠DEC=∠DCA=90°,∠EDC=∠CDA,
∴△CED∽△ACD.
∴CE:DE=AC:CD.
∵AC=BC,
∴AC:CD=n=3.
∴CE:DE=3.
同理可得:AE:DE=9.

(2)如圖,當(dāng)n=2時(shí),D為BC的中點(diǎn),取BF的中點(diǎn)G,連接DG,
則DG=FC,DG∥FC.
∵CE⊥AD,∠ACB=90°,
∴∠ECD+∠EDG=∠CAD+∠ADC=90°.
∴∠ECD=∠CAD.
∵tan∠ECD=,tan∠CAD==,
==
∵AC=BC,BC=2DC,
===
=
∵DG∥FA,
∴△GDE∽△FAE.
=
∴DG=AF.
∵DG=FC,
∴AF=2FC.

(3)如圖,∵BC=nDC,
∴DC:BC=1:n,
∴DC:AC=1:n,
∴DE:CE:AE=1:n:n2
∴DG:AF=1:n2;
又∵DG:CF=DB:BC=(BC-CD):BC=(n-1):n
要使AF=CF,必需n2=n:(n-1),(n>0)
∴當(dāng)n=,F(xiàn)為AC的中點(diǎn).
點(diǎn)評(píng):本題的關(guān)鍵是根據(jù)相似三角形得出線(xiàn)段之間的比例關(guān)系,進(jìn)而得出所求線(xiàn)段與n之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)要使式子
3-a
在實(shí)數(shù)范圍內(nèi)有意義,字母a的取值必須滿(mǎn)足( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)下列各式中計(jì)算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)如圖,在以AB為直徑的半圓中,有一個(gè)邊長(zhǎng)為1的內(nèi)接正方形CDEF,則,以AC和BC的長(zhǎng)為兩根的一元二次方程是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)設(shè)S1=1+
1
12
+
1
22
,S2=1+
1
22
+
1
32
,S3=1+
1
32
+
1
42
…,Sn=1+
1
n2
+
1
(n+1)2
,設(shè)S=
S1
+
S2
+…+
Sn
,其中n為正整數(shù),則用含n的代數(shù)式表示S為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)半徑為4的正六邊形的邊心距為
2
3
2
3
,中心角等于
60°
60°
度,面積為
24
3
24
3

查看答案和解析>>

同步練習(xí)冊(cè)答案