已知:如圖,等腰三角形ABC中,AB=AC=4,若以AB為直徑的⊙O與BC相交于點D,DE∥AB,DE與AC相交于點E,則DE=   
【答案】分析:作出輔助線,根據(jù)半圓或直徑所對的圓周角為90°,判斷出D為BC的中點,進而判斷出DE為△ABC的中位線,根據(jù)中位線定理即可解答.
解答:解:連接AD,
∵AB為直徑,
∴∠ADB=90°,
又∵AB=AC,
∴D為BC的中點,
又∵DE∥AB,
∴DE為△ABC的中位線,
∴DE=AB=×4=2.
點評:本題重點考查了直徑所對的圓周角為直角和中位線定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)一模)通過學習銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=
底邊
=
BC
AB
,容易知道一個角的大小與這個角的鄰對值也是一一對應的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=
3
3

(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時
sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為( ▼ )
A.B.1 C.D.2
(2)對于,∠A的正對值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆北京市昌平區(qū)初三上學期期末考試數(shù)學卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時
sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為( ▼ )

A.B.1 C.D.2
(2)對于,∠A的正對值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市昌平區(qū)初三上學期期末考試數(shù)學卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時

sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)對于,∠A的正對值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

同步練習冊答案