【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點,且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設圓O交AB于點E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.
【答案】
(1)解:⊙O即為所求:
(2)解:連接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠OAD,
∴∠BAD=∠ODA,
∴OD∥AB,
∴∠ODC=∠ABC=90°,
∵OD是半徑,
∴BC與⊙O相切;
(3)連接OE,過點O作OF⊥AB于點F,
∵AE=2,
∴由垂徑定理定理可知:AF=1,
∵CD=2BD,
∴ = , = ,
∵OF∥BC,
∴△AOF∽△ACB,
∴ ,
∵OF=BD,
∴ = ,
∴ = ,
∴AB=3,
∴BE=AB﹣AE=1,
∵OD∥AB,
∴△OCD∽△ACB,
∴ = ,
∴OD=2,
∴OA=OD=AE,
∴△AOE是等邊三角形,
∴∠AEO=60°
∵OD∥AB,
∴∠EOD=60°,
∴ 的長度是: = .
【解析】(1)要使⊙O過A、D兩點,即OA=OD,所以點O在線段AD的垂直平分線上,且圓心O在AC邊上,所以作出AD的垂直平分線與AC的交點即為點O;(2)要證明BC與⊙O相切,連接OD后,只需要證明∠ODC=90°即可;(3)由于AE是⊙O的弦,可過點O作OF⊥AE于點F,然后利用垂徑定理可知AF=1,利用△AOF∽△ACB求出AB的值,所以BE=AB﹣AE.再利用△OCD∽△ACB,求出半徑OD,可知△AOE是等邊三角形,所以 所對的圓心角為60°,利用弧長公式即可求出 的長度.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,把∠α=60°的一個單獨的菱形稱作一個基本圖形,將此基本圖形不斷的復制并平移,使得下一個菱形的一個頂點與前一個菱形的中線重合,這樣得到圖②,圖③,…
(1)觀察以上圖形并完成下表:
圖形名稱 | 基本圖形的個數(shù) | 菱形的個數(shù) |
圖① | 1 | 1 |
圖② | 2 | 3 |
圖③ | 3 | 7 |
圖④ | 4 | |
… | … | … |
猜想:在圖(n)中,菱形的個數(shù)為(用含有n(n≥3)的代數(shù)式表示);
(2)如圖,將圖(n)放在直角坐標系中,設其中第一個基本圖的對稱中心O1的坐標為(x1 , 1),則x1=;第2017個基本圖形的中心O2017的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中考前各校初三學生都要進行體育測試,某次中考體育測試設有A、B兩處考點,甲、乙、丙三名學生各自隨機選擇其中的一處進行中考體育測試,請用表格或樹狀圖分析:
(1)求甲、乙、丙三名學生在同一處進行體育測試的概率;
(2)求甲、乙、丙三名學生中至少有兩人在B處進行體育測試的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,直線y=﹣x+3與y=3x﹣5相交于C點,分別與x軸交于A、B兩點.P、Q分別為直線y=﹣x+3與y=3x﹣5上的點.
(1)求△ABC的面積;
(2)若P、Q關于原點成中心對稱,求P點的坐標;
(3)若△QPC≌△ABC,求Q點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,動點P、Q同時從點A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點C運動,設運動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關系可以用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過坐標原點,與x軸交于點A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上有一點P,滿足S△AOP=1,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com