如圖,已知拋物線與直線交于點O(0,0),。點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E。

(1)求拋物線的函數(shù)解析式;

(2)若點C為OA的中點,求BC的長;

(3)以BC,BE為邊構(gòu)造條形BCDE,設(shè)點D的坐標為(m,n),求m,n之間的關(guān)系式。

 

【答案】

解:(1)∵點在直線上,∴,即。

∴點A的坐標是(6,12)。

又∵點A(6,12)在拋物線上,

∴把A(6,12)代入,得。

∴拋物線的函數(shù)解析式為。

(2)∵點C為OA的中點,∴點C的坐標是(3,6)。

代入,解得(舍去)。

。

(3)∵點D的坐標為(m,n),∴點E的坐標為,點C的坐標為。

∴點B的坐標為。

代入,得,即。

∴m,n之間的關(guān)系式為

【解析】(1)根據(jù)點在曲線上,點的坐標滿足于方程的關(guān)系,先求得由點A在直線上求得點A的坐標,再由點A在拋物線上,求得,從而得到拋物線的函數(shù)解析式。

(2)由于點B,C的縱坐標相等,從而由點C為OA的中點求得點C的坐標,將其縱坐標代入,求得,即可得到BC的長。

(3)根據(jù)題意求出點B的坐標,代入即可求得m,n之間的關(guān)系式。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

如圖,已知拋物線與坐標軸的交點依次是

(1)求拋物線關(guān)于原點對稱的拋物線的解析式;

(2)設(shè)拋物線的頂點為,拋物線軸分別交于兩點(點在點的左側(cè)),頂點為,四邊形的面積為.若點,點同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點,點同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點與點重合為止.求出四邊形的面積與運動時間之間的關(guān)系式,并寫出自變量的取值范圍;

(3)當為何值時,四邊形的面積有最大值,并求出此最大值;

(4)在運動過程中,四邊形能否形成矩形?若能,求出此時的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

(2006山西課改,26)(14分)如圖,已知拋物線與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).

(1)求拋物線關(guān)于原點對稱的拋物線的解析式;

(2)設(shè)拋物線的頂點為M,拋物線x軸分別交于CD兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A、點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M、點N同時以每秒2個單位的速度沿豎直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;

(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;

(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省呂梁中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案