【題目】如圖,AB是⊙O的直徑,△ABC內(nèi)接于⊙O.點(diǎn)D在⊙O 上,BD平分∠ABC交AC于點(diǎn)E,DF⊥BC交BC的延長線于點(diǎn)F.
(1)求證:FD是⊙O的切線;
(2)若BD=8,sin∠DBF=,求DE的長.
【答案】(1)詳見解析;(2)
【解析】
(1)連接OD,根據(jù)角平分線的定義得到∠ABD=∠DBF,由等腰三角形的性質(zhì)得到∠ABD=∠ODB,等量代換得到∠DBF=∠ODB,推出∠ODF=90°,根據(jù)切線的判定定理得到結(jié)論;
(2)連接AD,根據(jù)圓周角定理得到∠ADE=90°,根據(jù)角平分線的定義得到∠DBF=∠ABD,解直角三角形得到AD=6,在Rt△ADE中,解直角三角形得到DE=.
(1)連接OD,
∵BD平分∠ABC交AC于點(diǎn)E,
∴∠ABD=∠DBF,
∵OB=OD,
∴∠ABD=∠ODB,
∴∠DBF=∠ODB,
∵∠DBF+∠BDF=90°,
∴∠ODB+∠BDF=90°,
∴∠ODF=90°,
∴FD是⊙O的切線;
(2)連接AD,
∵AB是⊙O的直徑,
∴∠ADE=90°,
∵BD平分∠ABC交AC于點(diǎn)E,
∴∠DBF=∠ABD,
在Rt△ABD中,BD=8,
∵sin∠ABD=sin∠DBF=,
∴AB=10,AD=6,
∵∠DAC=∠DBC,
∴sin∠DAE=sin∠DBC=,
在Rt△ADE中,sin∠DAC=,
設(shè)DE=3x,則AE=5x,
∴AD=4x,
∴tan∠DAE=
∴DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是,且經(jīng)過A(﹣4,0),C(0,2)兩點(diǎn),直線l:y=kx+t(k≠0)經(jīng)過A,C.
(1)求拋物線和直線l的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)P作PF⊥AC,垂足為F,當(dāng)△PEF≌△AED時(shí),求出點(diǎn)P的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,直接寫出所有滿足條件的Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,點(diǎn)、分別在邊、上,,連結(jié),點(diǎn)、、分別為、、的中點(diǎn).
(1)觀察猜想圖1中,線段與的數(shù)量關(guān)系是_______,位置關(guān)系是_______;
(2)探究證明把繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連結(jié)、、,判斷的形狀,并說明理由;
(3)拓展延伸把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,,請(qǐng)直接寫出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn),分別在,上,且,以為圓心,長為半徑作圓,經(jīng)過點(diǎn),與,分別交于點(diǎn),.
(1)求證:是的切線;
(2)若,,求的半徑;
(3)在(2)的條件下,若的內(nèi)切圓圓心為,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北省黃岡市)如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B.
(1)求直線AB的解析式;
(2)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)y=x﹣4;(2)P(4,0).
【解析】試題分析:(1)先把A(1,a)代入反比例函數(shù)解析式求出a得到A點(diǎn)坐標(biāo),再解方程組,得B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求AB的解析式;
(2)直線AB交x軸于點(diǎn)Q,如圖,利用x軸上點(diǎn)的坐標(biāo)特征得到Q點(diǎn)坐標(biāo),則PA﹣PB≤AB(當(dāng)P、A、B共線時(shí)取等號(hào)),于是可判斷當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,從而得到P點(diǎn)坐標(biāo).
試題解析:(1)把A(1,a)代入得a=﹣3,則A(1,﹣3),解方程組: ,得: 或,則B(3,﹣1),設(shè)直線AB的解析式為y=kx+b,把A(1,﹣3),B(3,﹣1)代入得: ,解得: ,所以直線AB的解析式為y=x﹣4;
(2)直線AB交x軸于點(diǎn)Q,如圖,當(dāng)y=0時(shí),x﹣4=0,解得x=4,則Q(4,0),因?yàn)?/span>PA﹣PB≤AB(當(dāng)P、A、B共線時(shí)取等號(hào)),所以當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,此時(shí)P點(diǎn)坐標(biāo)為(4,0).
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】成都三圣鄉(xiāng)花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時(shí),超過20盆部分的繡球花價(jià)格打8折.
(1)若小張家花臺(tái)綠化需用60盆兩種盆栽花卉,小張爸爸給他460元錢去購買,問兩種花卉各買了多少盆?
(2)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(3)為了美化環(huán)境,花園小區(qū)計(jì)劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時(shí),總費(fèi)用最少,最少費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條長為600m的筆直道路上均勻地跑步,速度分別為和,起跑前乙在起點(diǎn),甲在乙前面50m處,若兩人同時(shí)起跑,則從起跑出發(fā)到其中一人先到達(dá)終點(diǎn)的過程中,兩人之間的距離y(m)與時(shí)間t(s)的函數(shù)圖象是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com