已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0.

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)若△ABC的兩邊AB,AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5.當(dāng)△ABC是等腰三角形時(shí),求k的值.

分析:(1)證明這個(gè)一元二次方程的根的判別式大于0,根據(jù)一元二次方程的根的判別式的性質(zhì)得到這個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根;(2)求出方程的根,根據(jù)等腰三角形的判定分類(lèi)求解.

(1)證明:∵ 關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0中,a=1,b=-(2k+1),c=k2+k,

Δ=b2-4ac=[-(2k+1)]2-4×1×(k2+k)=1>0.

∴ 方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)解:∵ 由x2-(2k+1)x+k2+k=0,得(x-k)[x-(k+1)]=0,

∴ 方程的兩個(gè)不相等的實(shí)數(shù)根為x1=k,x2=k+1.

∵ △ABC的兩邊AB,AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5,∴ 有如下兩種情況:

情況1:x1=k=5,此時(shí)k=5,滿足三角形構(gòu)成條件;

情況2:x2=k+1=5,此時(shí)k=4,滿足三角形構(gòu)成條件.

綜上所述,k=4或k=5.

點(diǎn)撥:一元二次方程根的情況與判別式Δ的關(guān)系:

(1)Δ>0方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)Δ=0方程有兩個(gè)相等的實(shí)數(shù)根;

(3)Δ<0方程沒(méi)有實(shí)數(shù)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個(gè)實(shí)數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊(cè)答案