【題目】如圖1,點A在x軸上,OA=4,將OA繞點O逆時針旋轉120°至OB的位置.
(1)求經過A、O、B三點的拋物線的函數解析式;
(2)在此拋物線的對稱軸上是否存在點P使得以P、O、B三點為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3 )如圖2,OC=4,⊙A的半徑為2,點M是⊙A上的一個動點,求MC+OM的最小值.
【答案】(1)y=x2﹣x;(2)存在△POB為等腰三角形,符合條件的點P只有一個,坐標為(2,2);(3)MC+OM的最小值為CK=5.
【解析】
(1)設出拋物線解析式,利用待定系數法求出拋物線解析式即可
(2)設點P的坐標為(2,y),分三種情況討論,①OB=OP,②2OB=PB,③OP=PB,分別求出y的值,即可得出點P的坐
(3)在OA上取點K,使AK=1,連接CK交圓與點M,連接OM、CM ,利用△AKM∽△AMO ,求出MC+OM=MC+KM=CK,即可解答
(1)如圖1,過點B作BD⊥x軸于點D,
∴∠BDO=90°,
∵OA繞點O逆時針旋轉120°至OB,
∴OB=OA=4,∠AOB=120°,B在第二象限,
∴∠BOD=60°,
∴sin∠BOD= ,cos∠BOD= ,
∴BD= OB=2 ,OD= OB=2,
∴B(﹣2,2),
設過點A(4,0),B(﹣2,2),O(0,0)的拋物線解析式為y=ax2+bx+c,
∴ 解得: ,
∴拋物線的函數解析式為y= x2﹣ x;
(2)存在△POB為等腰三角形,
∵拋物線與x軸交點為A(4,0),O(0,0),
∴對稱軸為直線x=2,
設點P坐標為(2,p),
則OP2=22+p2=4+p2,BP2=(2+2)2+(p﹣2 )2=p2﹣4p+28,
①若OP=OB=4,則4+p2=42
解得:p1=2,p2=﹣2,
當p=﹣2時,∠POA=60°,即點P、O、B在同一直線上,
∴p≠﹣2,
∴P(2,2),
②若BP=OB=4,則p2﹣4p+28=42
解得:p1=p2=2,
∴P(2,2);
③若OP=BP,則4+p2=p2﹣4p+28,
解得:p=2,
∴P(2,2);
綜上所述,符合條件的點P只有一個,坐標為(2,2);
(3)在OA上取點K,使AK=1,連接CK交圓與點M,連接OM、CM,
此時,MC+ OM=MC+KM=CK為最小值,
理由:∵AK=1,MA=2,OA=4,
∴AM2=AKOA,而∠MAO=∠OAM,
∴△AKM∽△AMO,∴ =,
即:MC+OM=MC+KM=CK,
CK= =5,
即:MC+OM的最小值為CK=5.
科目:初中數學 來源: 題型:
【題目】近年來,體育分數在中招考試中占分比重越來越大,不少家長、考生也越來越重視;某中學計劃購買一批足球、跳繩供學生們考前日常練習使用,負責此次采購的老師從商場了解到:購買7個足球和4條跳繩共需510元;購買3個足球比購買5條跳繩少50元.
(1)求足球和跳繩的單價;
(2)按學校規(guī)劃,準備購買足球和跳繩共200件,且足球的數量不少于跳繩的數量的 ,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點0 為Rt△ABC斜邊AB上的一點,以OA 為半徑的☉O與BC切于點D,與AC 交于點E,連接AD.
(1) 求證: AD平分∠BAC;
(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為更好的了解中學生課外閱讀的情況,學校團委將初一年級學生一學期閱讀課外書籍量分為A(3本以內)、B(3——6本)、C(6——10本)、D(10本以上)四種情況進行了隨機調查,并根據調查結果制成了如下兩幅不完整的統(tǒng)計圖.請結合統(tǒng)計圖所給信息解答上列問題:
(1)在扇形統(tǒng)計圖中C所占的百分比是多少?
(2)請將折線統(tǒng)計圖補充完整;
(3)學校團委欲從課外閱讀量在10本以上的同學中隨機邀請兩位參加學校舉辦的“書香致遠 墨卷至恒”主題讀書日的形象大使,請你用列表法或畫樹狀圖的方法,求所選出的兩位同學恰好都是女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某體育用品商店購進了足球和排球共20個,一共花了1360元,進價和售價如表:
足球 | 排球 | |
進價(元/個) | 80 | 50 |
售價(元/個) | 95 | 60 |
(l)購進足球和排球各多少個?
(2)全部銷售完后商店共獲利潤多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.
(1)求梯形ABCD的面積S;
(2)動點P從點B出發(fā),以1cm/s的速度,沿BADC方向,向點C運動;動點Q從點C出發(fā),以1cm/s的速度,沿CDA方向,向點A運動,過點Q作QE⊥BC于點E.若P、Q兩點同時出發(fā),當其中一點到達目的地時整個運動隨之結束,設運動時間為t秒.問:
①當點P在BA上運動時,是否存在這樣的t,使得直線PQ將梯形ABCD的周長平分?若存在,請求出t的值;若不存在,請說明理由;
②在運動過程中,是否存在這樣的t,使得以P、A、D為頂點的三角形與△CQE相似?若存在,請求出所有符合條件的t的值;若不存在,請說明理由;
③在運動過程中,是否存在這樣的t,使得以P、D、Q為頂點的三角形恰好是以DQ為一腰的等腰三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的頂點是直線和直線的交點.
(1)用含的代數式表示頂點的坐標.
(2)①當時,的值均隨的增大而增大,求的取值范圍.
②若,且滿足時,二次函數的最小值為,求的取值范圍.
(3)試證明:無論取任何值,二次函數的圖象與直線總有兩個不同的交點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD中,點E是BC上的一個動點,EF⊥AE交CD于點F,以AE,EF為邊作矩形AEFG,若AB=4,則點G到AD距離的最大值是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC、△DCE、△FEG是三個全等的等腰三角形,底邊BC、CE、EG在同一直線上,且AB= ,BC=1,連結BF,分別交AC、DC、DE于點P、Q、R.
(1)求證:△BFG∽△FEG
(2)求sin∠FBG的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com