【題目】如圖,將矩形ABCD沿對角線BD折疊,點C的對應(yīng)點為點C′,連接CC′交AD于點F,BC′與AD交于點E

1)求證:△BAE≌△DCE

2)寫出AEEF之間的數(shù)量關(guān)系,并說明理由;

3)若CD2DF4,求矩形ABCD的面積.

【答案】1)見解析;(2AEEF,見解析;(3S矩形ABCD32

【解析】

1)根據(jù)AAS證明△BAE≌△DC′E即可.

2)證明AEEC′,EC′EF即可.

3)證明△CDF∽△BCD,再利用相似三角形的性質(zhì)求出BC即可解決問題.

解:(1)證明:∵四邊形ABCD是矩形,

ABCD,∠A=∠BCD90°

由翻折的性質(zhì)可知:CDC′D,∠BCD=∠BC′D90°

∴∠A=∠DC′E90°,ABC′D,

∵∠AEB=∠DEC′,

∴△BAE≌△DC′EAAS).

2)解:結(jié)論:AEEF

理由:∵△BAE≌△DC′E,

AEEC′,

BCBC′,

∴∠BCC′=∠BC′C,

EFBC

∴∠EFC′=∠BCC′,

∴∠EC′F=∠EFC′,

EFEC′

AEEF

3)解:由翻折可知:BDCC′,

∴∠FCD+∠BDC90°,∠BDC+∠CBD90°,

∴∠FCD=∠CBD,

∵∠CDF=∠BCD90°,

∴△CDF∽△BCD

,

,

BC8

S矩形ABCDBCCD32

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖(1),已知正方形ABCD和等腰直角EBF,點E在正方形BC邊上,點FAB邊的延長線上,∠EBF=90°,連結(jié)AE、CF

易證:∠AEB=CFB(不需要證明).

探究:如圖(2),已知正方形ABCD和等腰直角EBF,點E在正方形ABCD內(nèi)部,點F在正方形ABCD外部,∠EBF=90°,連結(jié)AECF

求證:∠AEB=CFB

應(yīng)用:如圖(3),在(2)的條件下,當(dāng)A、E、F三點共線時,連結(jié)CE,若AE=1,EF=2,則CE=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國很多地區(qū)持續(xù)出現(xiàn)霧霾天氣.某社區(qū)為了調(diào)查本社區(qū)居民對霧霾天氣主要成因的認(rèn)識情況,隨機對該社區(qū)部分居民進(jìn)行了問卷調(diào)查,要求居民從五個主要成因中只選擇其中的一項,被調(diào)查居民都按要求填寫了問卷.社區(qū)對調(diào)查結(jié)果進(jìn)行了整理,繪制了如下不完整的統(tǒng)計圖表.被調(diào)查居民選擇各選項人數(shù)統(tǒng)計表

霧霾天氣的主要成因

頻數(shù)(人數(shù))

A大氣氣壓低,空氣不流動

m

B地面灰塵大,空氣濕度低

40

C汽車尾氣排放

n

D工廠造成的污染

120

E其他

60

請根據(jù)圖表中提供的信息解答下列問題:

1)填空:m=________,n=________,扇形統(tǒng)計圖中C選項所占的百分比為________

2)若該社區(qū)居民約有6 000人,請估計其中會選擇D選項的居民人數(shù).

3)對于霧霾這個環(huán)境問題,請你用簡短的語言發(fā)出倡議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y1的圖象與函數(shù)y2kx+b的圖象交于點A(﹣1,aB(﹣8+a,1

1)求函數(shù)yykx+b的表達(dá)式;

2)觀察圖象,直接寫出不等式kx+b的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,BAC=30°,BC=2,在同一平面內(nèi),以AC為一邊作等邊ACD,連接BD,BD= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為拓展學(xué)生視野,促進(jìn)書本知識與生活實踐的深度融合,荊州市某中學(xué)組織八年級全體學(xué)生前往松滋洈水研學(xué)基地開展研學(xué)活動.在此次活動中,若每位老師帶隊14名學(xué)生,則還剩10名學(xué)生沒老師帶;若每位老師帶隊15名學(xué)生,就有一位老師少帶6名學(xué)生,現(xiàn)有甲、乙兩種大型客車,它們的載客量和租金如表所示:

甲型客車

乙型客車

載客量(人/輛)

35

30

租金(元/輛)

400

320

學(xué)校計劃此次研學(xué)活動的租金總費用不超過3000元,為安全起見,每輛客車上至少要有2名老師.

1)參加此次研學(xué)活動的老師和學(xué)生各有多少人?

2)既要保證所有師生都有車坐,又要保證每輛車上至少要有2名老師,可知租車總輛數(shù)為   輛;

3)學(xué)校共有幾種租車方案?最少租車費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,點OAC邊上的一個動點,過點O作直線MNBC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F

1)求證:EO=FO

2)當(dāng)點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化.

(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)

(2)求出當(dāng)a=10,b=12時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)抽取20名學(xué)生統(tǒng)計某月的用筆數(shù)量情況,結(jié)果如下表:

用筆數(shù)(支)

4

5

6

8

9

學(xué)生數(shù)

4

4

7

3

2

則關(guān)于這20名學(xué)生這個月的用筆數(shù)量的描述,下列說法正確的是( )

A. 眾數(shù)是7 B. 中位數(shù)是6 C. 平均數(shù)是5 D. 方差為0

查看答案和解析>>

同步練習(xí)冊答案