有一塊等腰三角形紙片,請你展開想像,裁剪出一個(gè)美麗的圖案

答案:
解析:

此為開放性試題,答案不惟一


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請?jiān)趫D③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請?jiān)趫D③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖①方法折疊,其中點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE是等腰三角形;

(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請?jiān)趫D③中畫出折痕;

(3)請?jiān)趫D④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;

(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省連云港市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•連云港)操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請?jiān)趫D③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

同步練習(xí)冊答案