【題目】如圖,在正方形ABCD中,AB=6,點E在邊CD上,DE= DC,連接AE,將△ADE沿AE翻折,點D落在點F處,點O是對角線BD的中點,連接OF并延長OF交CD于點G,連接BF,BG,則△BFG的周長是

【答案】
【解析】解;如圖延長EF交BC于M,連接AM,OM,作FN⊥CD于N,F(xiàn)R⊥BC于R,GH⊥OM于H交FR于T.

在RT△AMF和RT△AMB中,
,
∴△AMF≌△AMB,
∴BM=MF,設(shè)BM=MF=x,
在RT△EMC中,∵EM2=EC2+MC2 ,
∴(2+x)2=(6﹣x)2+42 ,
∴x=3,
∴BM=MC=3,
∵OB=OD,
∴OM= CD=3,
∵FR∥EC,
= ,
= ,
∴FR= ,設(shè)CG=y,則FT= ﹣y.OH=3﹣y,
∵FT∥OH,
= = = = ,∴ = ,
∴y=3,
∴CG=3,NG=CN﹣CG= ,在RT△FNG中,F(xiàn)G= = ,在RT△BCG中,BG= =2 ,
∵AB=AF,MB=MF,
∴AM⊥BF,
AMBF=2× ×AB×BM,
∴BF= ,
∴△BFG的周長= +2 + = + ).所以答案是 + ).
【考點精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l:y=kx(k<0),將直線y=kx沿y軸向下平移m(m>0)個單位得到直線y=kx﹣m,平移后的直線與拋物線y=ax2相交于A(x1 , y1),B(x2 , y2)兩點,拋物線y=ax2經(jīng)過點P(6,﹣9).
(1)求a的值;
(2)如圖1,當∠AOB<90°時,求m的取值范圍;

(3)如圖2,將拋物線y=ax2向右平移一個單位,再向上平移n個單位(n>0).若第一象限的拋物線上存在點M,N兩點,且M,N兩點關(guān)于直線y=x軸對稱,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( 。
A.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
B.“對角線相等且相互垂直平分的四邊形是正方形”這一事件是必然事件
C.“同位角相等”這一事件是不可能事件
D.“鈍角三角形三條高所在直線的交點在三角形外部”這一事件是隨機事件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生書寫漢字的能力.增強保護漢字的意識,我區(qū)舉辦了“漢字聽寫大賽”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x分

頻數(shù)(人數(shù))

第1組

25≤x<30

4

第2組

30≤x<35

6

第3組

35≤x<40

14

第4組

40≤x<45

a

第5組

45≤x<50

10

請結(jié)合圖表完成下列各題:

(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的菱形ABCD中,∠DAB=60°,以點D為圓心,菱形的高DF為半徑畫弧,交AD于點E,交CD于點G,則圖中陰影部分的面積是(  )

A.18 ﹣9π
B.18﹣3π
C.9
D.18 ﹣3π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應“全民閱讀”號召,某校在七年級800名學生中隨機抽取100名學生,對概念機學生在2015年全年閱讀中外名著的情況進行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計圖,其中閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%,根據(jù)圖中提供的信息,補全條形統(tǒng)計圖并估計該校七年級全體學生在2015年全年閱讀中外名著的總本數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【操作發(fā)現(xiàn)】在計算器上輸入一個正數(shù),不斷地按“ ”鍵求算術(shù)平方根,運算結(jié)果越來越接近1或都等于1.
【提出問題】輸入一個實數(shù),不斷地進行“乘以常數(shù)k,再加上常數(shù)b”的運算,有什么規(guī)律?
【分析問題】我們可用框圖表示這種運算過程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(x1 , y1),再在直線y=x上確定縱坐標為y1的點(x2 , y1),然后再x軸上確定對應的數(shù)x2 , …,以此類推.
【解決問題】研究輸入實數(shù)x1時,隨著運算次數(shù)n的不斷增加,運算結(jié)果x,怎樣變化.

(1)若k=2,b=﹣4,得到什么結(jié)論?可以輸入特殊的數(shù)如3,4,5進行觀察研究;
(2)若k>1,又得到什么結(jié)論?請說明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請在x軸上表示x2 , x3 , x4 , 并寫出研究結(jié)論;
②若輸入實數(shù)x1時,運算結(jié)果xn互不相等,且越來越接近常數(shù)m,直接寫出k的取值范圍及m的值(用含k,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為(  )

A.1:2
B.1:3
C.1:4
D.1:1

查看答案和解析>>

同步練習冊答案