(本小題滿(mǎn)分12分)已知直角坐標(biāo)系中菱形ABCD的位置如圖,CD兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線(xiàn)段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線(xiàn)CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

【小題1】(1)填空:菱形ABCD的邊長(zhǎng)是 ▲  、面積是
  ▲  、高BE的長(zhǎng)是 ▲  ;
【小題2】(2)探究下列問(wèn)題:
①若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線(xiàn)段BA上時(shí),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
②若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度變?yōu)槊棵?i>k個(gè)單位,在運(yùn)動(dòng)過(guò)程中,任何時(shí)刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個(gè)三角形組成的四邊形為菱形.請(qǐng)?zhí)骄慨?dāng)t =" 4" 秒時(shí)的情形,并求出k的值.






【小題1】(1)5  , 24,
【小題2】(2)①由題意,得AP=t,AQ=10-2t.    …………………………………………1分
如圖1,過(guò)點(diǎn)QQGAD,垂足為G,由QGBE得   
AQG∽△ABE,∴,
QG=,…………………………1分
(t≤5).
……1分
(t≤5).
∴當(dāng)t=時(shí),S最大值為6.…………………1分
②要使△APQ沿它的一邊翻折,翻折前后的兩個(gè)三角形組
成的四邊形為菱形,根據(jù)軸對(duì)稱(chēng)的性質(zhì),只需△APQ為等腰三角形即可.
當(dāng)t=4秒時(shí),∵點(diǎn)P的速度為每秒1個(gè)單位,∴AP=.………………1分
以下分兩種情況討論:
第一種情況:當(dāng)點(diǎn)QCB上時(shí), ∵PQBE>PA,∴只存在點(diǎn)Q1,使Q1A=Q1P.
如圖2,過(guò)點(diǎn)Q1Q1MAP,垂足為點(diǎn)MQ1M交 AC于點(diǎn)F,則AM=.
由△AMF∽△AOD∽△CQ1F,得
, ∴,
. ………………1分
CQ1==.則,
 .……………………………1分
第二種情況:當(dāng)點(diǎn)QBA上時(shí),存在兩點(diǎn)Q2,Q3,
分別使A P= AQ2,PA=PQ3.
①若AP=AQ2,如圖3,CB+BQ2=10-4=6.
,∴.……1分  
②若PA=PQ3,如圖4,過(guò)點(diǎn)PPNAB,垂足為N
由△ANP∽△AEB,得.
AE= ,∴AN.
AQ3=2AN=,  ∴BC+BQ3=10-
.∴.
………………………1分
綜上所述,當(dāng)t= 4秒,以所得的等腰三角形APQ
沿底邊翻折,翻折后得到菱形的k值為.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年九年級(jí)第二次模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)

如圖,反比例函數(shù)的圖象經(jīng)過(guò)A、B兩點(diǎn),根據(jù)圖中信息解答下列問(wèn)題:

1.(1)寫(xiě)出A點(diǎn)的坐標(biāo);

2.(2)求反比例函數(shù)的解析式;

3.(3)若點(diǎn)A繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90°后得到點(diǎn)C,請(qǐng)寫(xiě)出點(diǎn)C的坐標(biāo);并求出直線(xiàn)BC的解析式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)

如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點(diǎn)A 順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止。不考慮旋轉(zhuǎn)開(kāi)始和結(jié)束時(shí)重合的情況,設(shè)DE、DF(或它們的延長(zhǎng)線(xiàn))分別交BC(或它的延長(zhǎng)線(xiàn))于G、H點(diǎn),如圖(2)。

1.(1)問(wèn):始終與△AGC相似的三角形有                ;

2.(2)設(shè)CG=x,BH=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說(shuō)明理由);

3.(3)問(wèn):當(dāng)x為何值時(shí),△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長(zhǎng)AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長(zhǎng)。(II)如圖(2),先過(guò)B點(diǎn)作AB的垂線(xiàn)BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過(guò)點(diǎn)D作BD的垂線(xiàn)DE,交AC的延長(zhǎng)線(xiàn)于E,則測(cè)出DE的長(zhǎng)即為AB的距離。閱讀后回答下列問(wèn)題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實(shí)可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿(mǎn)足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長(zhǎng)?理由是         ,若ED=m,則AB=      。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇GSJY八年級(jí)第二次學(xué)情調(diào)研考試數(shù)學(xué)卷 題型:解答題

  (本小題滿(mǎn)分12分)

 1. (1)觀察發(fā)現(xiàn)

    如(a)圖,若點(diǎn)A,B在直線(xiàn)同側(cè),在直線(xiàn)上找一點(diǎn)P,使AP+BP的值最。

    做法如下:作點(diǎn)B關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),連接,與直線(xiàn)的交點(diǎn)就是所求的點(diǎn)P

    再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。

做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱(chēng)點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為        . (2分)

        

 

2.(2)實(shí)踐運(yùn)用

   如圖,菱形ABCD的兩條對(duì)角線(xiàn)分別長(zhǎng)6和8,點(diǎn)P是對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對(duì)角線(xiàn)AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫(xiě)出作法.  (5分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014屆湖北省孝感市七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

.(本小題滿(mǎn)分12分)

如圖,AD為△ABC的中線(xiàn),BE為△ABD的中線(xiàn)。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

(2)在△BED中作BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案