【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點.

(1)求證:ABM≌△DCM;

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.

【答案】(1)證明見解析;(2)四邊形MENF是菱形;理由見解析.

【解析】(1)由矩形的性質(zhì)得出AB=DC,∠A=∠D,再由MAD的中點,根據(jù)SAS即可證明ABM≌△DCM;

(2)先由(1)得出BM=CM,再由已知條件證出ME=MFEN、FNBCM的中位線,即可證出EN=FN=ME=MF,得出四邊形MENF是菱形.

(1)證明:∵四邊形ABCD是矩形,

∴∠A=∠D=90°,AB=DC,

∵M是AD的中點,

∴AM=DM,

在△ABM和△DCM中,,

∴△ABM≌△DCM(SAS);

(2)解:四邊形MENF是菱形;理由如下:

由(1)得:△ABM≌△DCM,

∴BM=CM,

∵E、F分別是線段BM、CM的中點,

∴ME=BE=BM,MF=CF=CM,

∴ME=MF,

又∵N是BC的中點,

∴EN、FN是△BCM的中位線,

∴EN=CM,F(xiàn)N=BM,

∴EN=FN=ME=MF,

∴四邊形MENF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中,運用整體思想方法在求代數(shù)式的值中非常重要.

例如:已知:a2+2a=1,則代數(shù)式2a2+4a+4=2( a2+2a) +4=2×1+4=6.

請你根據(jù)以上材料解答以下問題:

1)若,求的值;

2)當(dāng)時,代數(shù)式的值是5,求當(dāng)時,代數(shù)式px3+qx+1的值;

3)當(dāng)時,代數(shù)式的值為m,求當(dāng)時,求代數(shù)式的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b滿足,,且有理數(shù)ab、c在數(shù)軸上對應(yīng)的點分別為AB、C

______,______,______

D是數(shù)軸上A點右側(cè)一動點,點E、點F分別為CD、AD中點,當(dāng)點D運動時,線段EF的長度是否發(fā)生變化,若變化,請說明理由,若不變,請求出其值;

若點AB、C在數(shù)軸上運動,其中點C以每秒1個單位的速度向左運動,同時點A和點B分別以每秒3個單位和每秒2個單位的速度向右運動請問:是否存在一個常數(shù)m使得不隨運動時間t的改變而改變若存在,請求出m和這個不變化的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件中,能使平行四邊形是菱形的是(

A. ①③ B. ②③ C. ③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k0).

(1)求該拋物線與x軸的交點及頂點的坐標(biāo)(可以用含k的代數(shù)式表示);

(2)若記該拋物線頂點的坐標(biāo)為P(m,n),直接寫出|n|的最小值;

3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上兩點間的距離等于這兩個點所對應(yīng)的數(shù)的差的絕對值.例:點A、B在數(shù)軸上對應(yīng)的數(shù)分別為a、b,則A、B兩點間的距離表示為AB|ab|.根據(jù)以上知識解題:

1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB_______

2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a______

3)如果數(shù)軸上表示數(shù)a的點位于﹣42之間,那么|a+4|+|a2|______

4)對于任何有理數(shù)x|x3|+|x6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的外接圓,AB的直徑,DAB延長線的一點, DC的延長線于 F,且

求證:DE的切線;

,求AEBC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,于點,點上,且,連接

(1)求證

(2)如圖,將繞點逆時針旋轉(zhuǎn)得到(點分別對應(yīng)點),設(shè)射線相交于點,連接,試探究線段之間滿足的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣43

1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;

2)求出△A1B1C1的面積;

3)將△ABC向左平移2個單位,再向上平移2個單位得△A2B2C2,請直接寫出點A2,B2,C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案