【題目】如圖所示,直線,垂足為點(diǎn)是直線上的兩點(diǎn),且.直線繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角度為.
(1)當(dāng)時(shí),在直線上找點(diǎn),使得是以為頂角的等腰三角形,此時(shí)_____.
(2)當(dāng)在什么范圍內(nèi)變化時(shí),直線上存在點(diǎn),使得是以為頂角的等腰三角形,請(qǐng)用不等式表示的取值范圍:_________.
【答案】(1)或;(2)45°≤≤135°且≠90°
【解析】
(1)先求出旋轉(zhuǎn)后與的夾角,然后根據(jù)題意以點(diǎn)B為圓心,的長(zhǎng)為半徑作弧,與直線的交點(diǎn)P即為所求,利用銳角三角函數(shù)即可求出BC和OC,再利用勾股定理求出PC,從而求出結(jié)論;
(2)當(dāng)由圖可知:當(dāng)BC≤AB且A、B、P不共線時(shí),直線上存在點(diǎn),使得是以為頂角的等腰三角形,求出當(dāng)BC=AB=時(shí),的度數(shù),然后根據(jù)題意即可求出結(jié)論.
解:(1)當(dāng)時(shí),此時(shí)與的夾角為90°-60°=30°
以點(diǎn)B為圓心,的長(zhǎng)為半徑作弧,與直線的交點(diǎn)P即為所求,即BP=AB=,過(guò)點(diǎn)B作BC⊥,
BC=OB·sin30°=1<BP,OC=OB·cos30°=
∴在直線上存在兩個(gè)P點(diǎn)滿足題意
根據(jù)勾股定理PC=
∴OP=OC-PC或OP=OC+PC
∴OP=或
故答案為:或;
(2)當(dāng)由圖可知:當(dāng)BC≤AB且A、B、P不共線時(shí),直線上存在點(diǎn),使得是以為頂角的等腰三角形,
當(dāng)BC=AB=時(shí),
sin∠BOC=
∴∠BOC=45°
當(dāng)點(diǎn)B在直線右側(cè)時(shí),
90°-∠BOC=45°;
當(dāng)點(diǎn)B在直線左側(cè)時(shí),
90°+∠BOC=135°;
∵BC≤AB且A、B、P不共線時(shí)
∴45°≤≤135°且≠90°
故答案為:45°≤≤135°且≠90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某公路局施工隊(duì)要修建一條東西方向的公路,已知點(diǎn)周?chē)?/span>100米范圍內(nèi)為古建筑保護(hù)群,在上的點(diǎn)處測(cè)得在的北偏東方向上,從向東走400米到達(dá)處,測(cè)得在點(diǎn)的北偏西方向上.(參考數(shù)據(jù):,)
(1)是否穿過(guò)古建筑保護(hù)群?為什么?
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿運(yùn)動(dòng),如果、兩點(diǎn)同時(shí)出發(fā),的速度為1個(gè)單位/秒.在上的速度為1個(gè)單位/秒,在上的速度為個(gè)單位/秒.設(shè)出發(fā)時(shí)間為,記的面積的函數(shù)圖象為.
(1)當(dāng)時(shí),的長(zhǎng)是_________;
(2)若直線與有兩個(gè)交點(diǎn),則的取值范圍為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)錫有豐富的旅游產(chǎn)品.一天某校九年級(jí)(1)班的同學(xué)就部分旅游產(chǎn)品的喜愛(ài)情況隨機(jī)抽取了的2%來(lái)錫游客進(jìn)行問(wèn)卷調(diào)查,要求游客在列舉的旅游產(chǎn)品中選出最喜愛(ài)的產(chǎn)品,且只能選一項(xiàng),以下是同學(xué)們整理的不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息完成下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)在扇形統(tǒng)計(jì)圖中,A部分所占的圓心角是 度.
(3)根據(jù)調(diào)查結(jié)果估計(jì)這天在所有的游客中最喜愛(ài)惠山泥人的約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實(shí)踐活動(dòng)中對(duì)此開(kāi)展測(cè)量活動(dòng).如圖,在橋外一點(diǎn)A測(cè)得大橋主架與水面的交匯點(diǎn)C的俯角為α,大橋主架的頂端D的仰角為β,已知測(cè)量點(diǎn)與大橋主架的水平距離AB=a,則此時(shí)大橋主架頂端離水面的高CD為( )
A.asinα+asinβB.acosα+acosβC.atanα+atanβD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知點(diǎn)、在直線上,且于點(diǎn),且,以為直徑在的左側(cè)作半圓于點(diǎn),且.
(1)若半圓上有一點(diǎn),則的最大值為__________;
(2)向右沿直線平移得到.
①如圖②,若截半圓的的長(zhǎng)為,求的度數(shù);
②當(dāng)半圓與的邊相切時(shí),求平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為測(cè)量一棵大樹(shù)AH及其樹(shù)葉部分AB的高度,將測(cè)角儀放在F處測(cè)得大樹(shù)頂端A的仰角為30°,放在G處測(cè)得大樹(shù)頂端A的仰角為60°,樹(shù)葉部分下端B的仰角為45°,已知點(diǎn)F、G與大樹(shù)底部H共線,點(diǎn)F、G相距15米,測(cè)角儀高度為1.5米.求該樹(shù)的高度AH和樹(shù)葉部分的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市用1200元購(gòu)進(jìn)甲乙兩種文具,甲種文具進(jìn)價(jià)12元/個(gè),售價(jià)為15元/個(gè).乙種文具進(jìn)價(jià)10元/個(gè),售價(jià)為12元/個(gè).全部售完后獲利270元.
(1)求該超市購(gòu)進(jìn)甲乙兩種文具各多少個(gè)?
(2)若該超市以原價(jià)再次購(gòu)進(jìn)這兩種文具,且購(gòu)進(jìn)甲種文具數(shù)量不變,乙種文具購(gòu)進(jìn)數(shù)量是第一次的2倍,乙種文具按原售價(jià)出售,甲種文具降價(jià)銷(xiāo)售,當(dāng)兩種文具銷(xiāo)售完畢后,要使再次購(gòu)進(jìn)的文具獲利不少于340元,甲種文具每個(gè)最低售價(jià)應(yīng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB為⊙O的直徑,點(diǎn)C在⊙O上,且OC⊥AB,過(guò)點(diǎn)C的弦CD與線段OB相交于點(diǎn)E,滿足∠AEC=65°,連接AD,則∠BAD等于( )
A.20°B.25°C.30°D.32.5°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com