【題目】如圖,Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC上的點,且滿足AC=DC=DE=BE=1,則tanA= .
【答案】 +1
【解析】解:設∠B=x°, ∵BE=DE,
∴∠B=∠BDE=x°,
∴∠CED=2x°,
又∵DE=DC,
∴∠ECD=∠CED=2x°.
∴∠DCA=∠ACB﹣∠ECD=90°﹣2x°.
∵直角△ABC中,∠A=90°﹣∠A=90°﹣x°.
又∵CA=CD,
∴∠ADC=∠A=90°﹣x°.
∵△ACD中,∠ACD+∠A+∠ADC=180°,
∴(90﹣2x)+2(90﹣x)=180°,
解得x=22.5°,則∠CED=∠ECD=45°,
∴△ECD是等腰直角三角形,
∴EC= CD= ,
∴BC= +1,
∴tanA= = +1.
故答案是: +1.
【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法中正確的序號是_____.
①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( )
A.40°
B.45°
C.50°
D.55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)﹣18×(﹣2)÷3
(2)(﹣)×(﹣90)÷
(3)﹣2.5÷×(﹣);
(4)(﹣10)2﹣[16+(﹣3)2]
(5)(﹣+2)÷
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解學生的課外閱讀情況,就“我最喜愛的課外讀物”從文學、藝術、科普和其它四個類別進行了抽樣調(diào)查(每位同學僅選一項),并根據(jù)調(diào)查結果制作了尚不完整的頻數(shù)分布表:
類別 | 頻數(shù)(人數(shù)) | 頻率 |
文學 | m | 0.42 |
藝術 | 22 | 0.11 |
科普 | 66 | n |
其他 | 28 | |
合計 | 1 |
(1)表中m= , n=;
(2)在這次抽樣調(diào)查中,最喜愛閱讀哪類讀物的學生最少?
(3)根據(jù)以上調(diào)查,試估計該校1200名學生中最喜愛閱讀科普讀物的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.
(1)求梯子底端B外移距離BD的長度;
(2)猜想CE與BE的大小關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點A,頂點為B.
(1)用含a的式子表示點B的坐標;
(2)經(jīng)過點C(0,﹣2)的直線AC與OB(O為原點)相交于點D,與拋物線的對稱軸相交于點E,△OCD≌△BED,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com