(1)證明:根據(jù)翻折,∠1=∠2,EC=EF,
∵FH⊥BC,
∴∠3+∠4=90°,
又∵∠1+∠4=∠BCD=90°,
∴∠1=∠3,
∴∠2=∠3,
∴EF∥CG,
又∵FH⊥BC,∠BCD=90°,
∴FG∥CD,
∴四邊形CEFG是平行四邊形,
∵EC=EF(已證),
∴四邊形CEFG是菱形;
(2)解:根據(jù)翻折,BF=BC=10,
在Rt△ABF中,AF=
=
=6,
∴DF=AD-AF=10-6=4,
設(shè)CE=EF=x,則DE=CD-CE=8-x,
在Rt△DEF中,DF
2+DE
2=EF
2,
即4
2+(8-x)
2=x
2,
解得x=5,
所以,四邊形CEFG的面積=CE•DF=5×4=20.
分析:(1)根據(jù)翻折的性質(zhì)可得∠1=∠2,EC=EF,再根據(jù)同角的余角相等求出∠1=∠3,從而得到∠2=∠3,根據(jù)同位角相等,兩直線平行可得EF∥CG,再根據(jù)垂直于同一直線的兩直線平行求出FG∥CD,從而求出四邊形CEFG是平行四邊形,然后根據(jù)鄰邊相等的平行四邊形是菱形證明;
(2)根據(jù)翻折的性質(zhì)可得BF=BC=10,然后利用勾股定理列式求出AF,從而得到DF的長,設(shè)CE=EF=x,表示出DE,在Rt△DEF中,利用勾股定理列出方程求出x的值,再根據(jù)菱形的面積公式列式計算即可得解.
點評:本題考查了矩形的性質(zhì),菱形的判定與性質(zhì),翻折變換的性質(zhì),(1)求出四邊形CEFG是鄰邊相等的平行四邊形是證明菱形的關(guān)鍵,(2)根據(jù)勾股定理求出菱形的邊長是解題的關(guān)鍵.