精英家教網(wǎng)如圖所示,將矩形ABCD沿著直線BD折疊,使點(diǎn)C落在點(diǎn)C′,BC′交AD于點(diǎn)E,AD=8,AB=4.
(1)求證:△BED是等腰三角形;
(2)求△BED的面積.
分析:(1)要證△BED是等腰三角形,只需證明∠1=∠2即可,根據(jù)翻折的性質(zhì)∠2=∠3,又∠1=∠3,繼而得證;
(2)只需求出ED的長即可求出△BED的面積,設(shè)ED=x,則AE=8-x,BE=x,在Rt△ABE中,根據(jù)勾股定理即可求出ED的長.
解答:(1)證明:根據(jù)翻折的性質(zhì)可得:∠2=∠3,
又AD∥BC,∴∠1=∠3,
∴∠1=∠2,△BED是等腰三角形,得證.

(2)解:設(shè)ED=x,則AE=8-x,BE=ED=x,
在Rt△ABE中,根據(jù)勾股定理有AB2+AE2=BE2,
代入得:42+(8-x)2=x2,解得:x=5,
S△BED=
1
2
ED•AB=
1
2
×5×4
=10.
點(diǎn)評(píng):本題考查的是圖形翻折變換的性質(zhì),解答此類題目首先清楚折疊和軸對(duì)稱能夠提供給我們隱含的并且可利用的條件.解題時(shí),我們常常設(shè)要求的線段長為x,然后根據(jù)折疊和軸對(duì)稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當(dāng)?shù)闹苯侨切,運(yùn)用勾股定理列出方程求出答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖所示,將矩形紙片先沿虛線AB按箭頭方向向右對(duì)折,接著對(duì)折后的紙片沿虛線CD向下對(duì)折,然后剪下一個(gè)小三角形,再將紙片打開,則打開后的展開圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,將矩形ABCD沿兩條較長邊的中點(diǎn)的連線對(duì)折,如果矩形BEFA與矩形ABCD相似,那么AB:AD等于( 。
A、
2
:1
B、1:
2
C、
3
:1
D、1:
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,將矩形OABC沿AE折疊,使點(diǎn)O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=
S四邊形CFGH
S四邊形CMNO
,請(qǐng)問m是否為定值?若是,請(qǐng)求出m的值;若不是,請(qǐng)說明理由;
(3)在(2)的條件下,若CO=1,CE=
1
3
,Q為AE上一點(diǎn)且QF=
2
3
,拋物線y=mx2+bx+c經(jīng)過C、Q兩點(diǎn),請(qǐng)求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點(diǎn)P,試問在直線BC上是否存在點(diǎn)K,使得以P、B、K為頂點(diǎn)的三角形與△AEF相似?若存在,請(qǐng)求直線KP與y軸的交點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明精英家教網(wǎng)理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,將矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C′處,BC′交AD于E,AD=8,AB=4,那么△BED面積是
 
平方單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案