【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為(﹣4,4),(﹣1,2).

(1)①請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;
②將△ABC向右平移2個單位長度,然后再向下平移3個單位長度,得到△A′B′C′,畫出平移后的△A′B′C′.
(2)寫出點△A′B′C′各個頂點的坐標.

【答案】
(1)解:如圖所示:


(2)解:A′(﹣2,1),B′(0,﹣3),C′(1,﹣1).


【解析】(1)首先根據(jù)C點坐標確定原點位置,再作出坐標系;(2)首先確定A、B、C三點向右平移2個單位長度,然后再向下平移3個單位長度后的對應點位置,然后再連接即可;(3)根據(jù)坐標系寫出△A′B′C′各個頂點的坐標即可.
【考點精析】認真審題,首先需要了解坐標與圖形變化-平移(新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列定理有逆定理的是( )

A. 直角都相等 B. 同旁內(nèi)角互補,兩直線平行

C. 對頂角相等 D. 全等三角形的對應角相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列六種說法正確的個數(shù)是( )
①無限小數(shù)都是無理數(shù);
②正數(shù)、負數(shù)統(tǒng)稱實數(shù);
③無理數(shù)的相反數(shù)還是無理數(shù);
④無理數(shù)與無理數(shù)的和一定還是無理數(shù);
⑤無理數(shù)與有理數(shù)的和一定是無理數(shù);
⑥無理數(shù)與有理數(shù)的積一定仍是無理數(shù).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設平面內(nèi)一點到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對于一個點與等邊三角形,給出如下定義:滿足rdR的點叫做等邊三角形的中心關(guān)聯(lián)點.在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知點D(2,2),E,1),F,﹣1).在D,E,F中,是等邊△ABC的中心關(guān)聯(lián)點的是

(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°.

①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點Pm,n),求m的取值范圍;

②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b總存在等邊△ABC的中心關(guān)聯(lián)點;(直接寫出答案,不需過程)

(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為.當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關(guān)聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湖北省201812月初出現(xiàn)了全省范圍內(nèi)的強降溫,如果氣溫上升5℃記為+5℃,則-8℃表示( )

A. 下降3 B. 上升3 C. 下降8 D. 上升8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P(1,1),N(2,0),△MNP和△M1N1P1的頂點都在格點上,△MNP與△M1N1P1是關(guān)于某一點中心對稱,則對稱中心的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關(guān)于點C成中心對稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當∠ACB為多少度時,四邊形ABDE為矩形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC由△A′B′C′繞O點旋轉(zhuǎn)180°而得到,則下列結(jié)論不成立的是( )

A.點A與點A′是對應點
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′

查看答案和解析>>

同步練習冊答案