【題目】如圖,ABO直徑,BCAB于點(diǎn)B,點(diǎn)C是射線BC上任意一點(diǎn),過點(diǎn)CCDO于點(diǎn)D,連接AD

(1)求證:BCCD;

(2)若∠C60°,BC3,求AD的長.

【答案】(1)證明見解析;(2).

【解析】

(1)根據(jù)切線的判定定理得到BCO的切線,再利用切線長定理證明即可;

(2)根據(jù)含30°的直角三角形的性質(zhì)、正切的定義計算即可.

(1)ABO直徑,BCAB,

BCO的切線,

CDO于點(diǎn)D,

BCCD

(2)連接BD,

BCCD,∠C60°,

∴△BCD是等邊三角形,

BDBC3,∠CBD60°,

∴∠ABD30°,

ABO直徑,

∴∠ADB90°,

ADBDtanABD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax22ax2a≠0).

1)該二次函數(shù)圖象的對稱軸是直線   ;

2)若該二次函數(shù)的圖象開口向上,當(dāng)﹣1≤x≤5時,函數(shù)圖象的最高點(diǎn)為M,最低點(diǎn)為N,點(diǎn)M的縱坐標(biāo)為,求點(diǎn)M和點(diǎn)N的坐標(biāo);

3)若該二次函數(shù)的圖象開口向下,對于該二次函數(shù)圖象上的兩點(diǎn)Ax1,y1)、Bx2,y2),當(dāng)x2≥3時,均有y1y2,請結(jié)合圖象,直接寫出x1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);

(3)有一個點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位的速度在AB上向點(diǎn)B運(yùn)動,另一個點(diǎn)N從點(diǎn)D與點(diǎn)M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M 達(dá)點(diǎn)B時,點(diǎn)MN同時停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)邊上,,邊相交于點(diǎn)

1)求證:;

2)如果,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA,PB分別切⊙O于點(diǎn)A、B,∠P60°,PA8,那么弦AB的長是_____;連接OAOB,則∠AOB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( 。

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸交于AB兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D

1)請直接寫出點(diǎn)ACD的坐標(biāo);

2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長最小,求點(diǎn)E的坐標(biāo);

3)如圖(2),F為直線AC上的動點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

同步練習(xí)冊答案