【題目】閱讀下面材料:
小天在學習銳角三角函數(shù)中遇到這樣一個問題:在Rt△ABC中,∠C=90°,∠B=22.5°,則tan22.5°=
小天根據(jù)學習幾何的經(jīng)驗,先畫出了幾何圖形(如圖1),他發(fā)現(xiàn)22.5°不是特殊角,但它是特殊角45°的一半,若構(gòu)造有特殊角的直角三角形,則可能解決這個問題.于是小天嘗試著在CB邊上截取CD=CA,連接AD(如圖2),通過構(gòu)造有特殊角(45°)的直角三角形,經(jīng)過推理和計算使問題得到解決.
請回答:tan22.5°= .
參考小天思考問題的方法,解決問題:
如圖3,在等腰△ABC 中,AB=AC,∠A=30°,請借助△ABC,構(gòu)造出15°的角,并求出該角的正切值.
【答案】 ﹣1;解: 如圖3,延長BA到D,使AD=AB,則AB=AD=AC,∴∠D=∠ACD,∵∠CAB=∠D+∠ACD=30°, ∴∠D=15°,作CH⊥AB于H,設CH=x,則AC=2x,AH= x,∴AD=AC=2x,∴DH=AD+AH=(2+ )x,在Rt△DCH中,tanD= ,即tan15°=2﹣
【解析】如圖2,設CD=CA=a,則AD= a,
∵∠B=22.5°,∠ADC=45°,
∴∠DAB=22.5°,
∴∠DAB=∠B,
∴DB=DA= a,
∴BC=BD+CD=( +1)a,
在Rt△ABC中,tanB= ,
即tan22.5°= ﹣1;
【考點精析】認真審題,首先需要了解三角形的外角(三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角),還要掌握銳角三角函數(shù)的定義(銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù))的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】列方程組解應用題:
為了保護環(huán)境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有A、B兩種型號,其中每臺的價格,年省油量如下表:
A | B | |
價格(萬元/臺) | a | b |
節(jié)省的油量(萬升/年) | 2.4 | 2 |
經(jīng)調(diào)查,購買一臺A型車比購買一臺B型車多20萬元,購買2臺A型車比購買3臺B型車少60萬元.
(1)請求出a和b;
(2)若購買這批混合動力公交車每年能節(jié)省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“母親節(jié)”前夕,我市某校學生積極參與“關愛貧困母親”的活動,他們購進了一批單價為20元的“孝文化衫”在課余時間進行義賣,并將所得利潤捐給貧困母親.在義賣的過程中發(fā)現(xiàn)“這種文化衫每天的銷售件數(shù)y(件)與銷售單價x(元)滿足一次函數(shù)關系:y=﹣3x+108(20<x<36)”.如果義賣這種文化衫每天的利潤為p(元),那么銷售單價定為多少元時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寒假將近,某學校將組織七年級部分同學去亞布力參加“冰雪冬令營”.學校提前給所去學生預定房間,如果在所預定的房間里每間住人,則有人無法安排;每間住人,則空出張床.
(1)本次參加“冰雪冬令營”的學生總數(shù)為多少人?
(2)冬令營結(jié)束時,學校準備給這些同學每人送一個售價為元的或種紀念品,但實際購買時發(fā)現(xiàn),、兩種商品的售價都有變動,種商品打八折出售,種商品的價錢比原售價提高了,若實際購買種商品費用比購買種商品費用的倍多元,那么此次活動中學校購買種商品多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,點在第一象限,過點A向x軸作垂線,垂足為點B,連接OA,,點M從O出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負方向運動,點M與點N同時出發(fā),設點M的運動時間為t秒,連接AM,AN,MN.
求a的值;
當時,
請?zhí)骄?/span>,,之間的數(shù)量關系,并說明理由;
試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由.
當時,請求出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.
(1)求證:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B、D分別在射線AN、AM上.
(1)在圖1中,當∠ABC=∠ADC=90°時,求證:AD+AB=AC
(2)若把(1)中的條件“∠ABC=∠ADC=90°”改為∠ABC+∠ADC=180°,其他條件不變,如圖2所示,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(圖1) (圖2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com