【題目】情境觀察
將矩形紙片沿對(duì)角線剪開,得到和,如圖所示.將的頂點(diǎn)與點(diǎn)重合,并繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)、、在同一條直線上,如圖所示.
觀察圖可知:與相等的線段是________,________°.
問題探究
如圖,中,于點(diǎn),以為直角頂點(diǎn),分別以、為直角邊,向外作等腰和等腰,過點(diǎn)、作射線的垂線,垂足分別為、.試探究與之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸
如圖,中,于點(diǎn),分別以、為一邊向外作矩形和矩形,射線交于點(diǎn).若,,試探究與之間的數(shù)量關(guān)系,并說明理由.
【答案】①,;②,理由見解析;③,理由見解析.
【解析】
①觀察圖形即可發(fā)現(xiàn)△ABC≌△AC′D,即可解題;
②易證△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,F(xiàn)Q=AG,即可解題;
③過點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.根據(jù)全等三角形的判定和性質(zhì)即可解題.
①觀察圖形即可發(fā)現(xiàn),即,,
∴;
故答案為:,.
②,
理由如下:
∵,,
∴,同理,
又∵,
∴,
∴,
同理,
∴.
③.
理由:過點(diǎn)作,,垂足分別為、.
∵四邊形是矩形,
∴,
∴,
又,
∴,
∴.
∵,
∴,
∴.
同理,
∴.
∵,,
∴,
∴.
∴.
又∵,,
∴.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】件同型號(hào)的產(chǎn)品中,有件不合格品和件合格品
從這件產(chǎn)品中隨即抽取件進(jìn)行檢測,列表或畫樹狀圖,求抽到都是合格品的概率.
在這件產(chǎn)品中加入件合格品后,進(jìn)行如下試驗(yàn):隨即抽取件進(jìn)行檢測,然后放回,多次重復(fù)這個(gè)試驗(yàn),通過大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在,則可以推算出的值大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的A處,若AO=OB=2,則陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?
(銷售利潤=銷售價(jià)-成本價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母A、B、C,并求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1;
(3)寫出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的圖象如圖所示,則下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分線BD交AC于點(diǎn)D,點(diǎn)M、N分別是BD和BC上的動(dòng)點(diǎn),則CM+MN的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長為2,寬為的矩形紙片(),剪去一個(gè)邊長等于矩形寬度的正方形(稱為第一次操作);
(1)第一次操作后剩下的矩形長為,寬為 ;
(2)再把第一次操作后剩下的矩形剪去一個(gè)邊長等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.
①求第二次操作后剩下的矩形的面積;
②若在第3次操作后,剩下的圖形恰好是正方形,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com