【題目】已知是等邊三角形,點是的中點,點在射線上,點在射線上,,
(1)如圖1,若點與點重合,求證:.
(2)如圖2,若點在線段上,點在線段上,求的值.
【答案】(1)見解析(2)12.
【解析】
(1)由等邊三角形和等腰三角形的性質(zhì)得出∠DBC=∠P,即可得出DB=DE;
(2)過點D作DH∥BC,交AB于點 H,證明△DQH≌△DPC(ASA),得出HQ=CP,得出BQ+BP=BH+HQ+BP=BH+BP+PC=BH+BC=即可求解.
(1)證明:∵△ABC 為等邊三角形,
∴BA=BC,∠ABC=60,
∵D為AC的中點,
∴DB 平分∠ABC,
∴∠DBC=30,
∵
∴∠P=18012030=30
∴∠DBC=∠P,
∴DB=DP
(2)過點D作DH∥BC,交AB于點 H,如圖2所示:
∵△ABC 為等邊三角形,
∴∠A=∠B=∠C=60,
∵DH∥BC,
∴∠AHD=∠B=60,∠ADH=∠C=60,
∴∠AHD=∠ADH=∠C=60,∠HDC=120,
∴△ADH 是等邊三角形,
∴DH=AD,
∵D為AC 的中點,
∴DA=DC,
∴DH=DC,
∵∠PDQ=120,∠HDC=120,
∴∠PDH+∠QDH=∠PDH+∠CDP,
∴∠QDH=∠CDP,
在△DQH 和△DPC 中,
,
∴△DQH≌△DPC,
∴HQ=CP,
∴BQ+BP=BH+HQ+BP=BH+BP+PC=BH+BC==12,
即=12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是菱形,其中B點坐標(biāo)是(8,2),D點坐標(biāo)是(0,2),點A在x軸上,則菱形ABCD的周長是( )
A.2
B.8
C.8
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強”、 “很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖:
根據(jù)以上信息,解答下列問題:
(1)該校有名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般"的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學(xué)生約有多少名?
(2)請將條形統(tǒng)計圖補充完整.
(3)求出安全意識為“較強”的學(xué)生所占的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,AB=CD,點E、F在BC上,且BF=CE.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).
(1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=x與雙曲線y2=(x>0)交于點A,將直線y1=x向下平移4個單位后稱該直線為y3,若y3與雙曲線交于B,與x軸交于C,與y軸交于D,AO=2BC,連接AB,則以下結(jié)論錯誤的有( )
①點C坐標(biāo)為(3,0);②k=;③S四邊形OCBA=;④當(dāng)2<x<4時,有y1>y2>y3;⑤S四邊形ABDO=2S△COD.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=﹣x+1的圖象的一個交點為A(﹣1,m).
(1)求這個反比例函數(shù)的表達(dá)式;
(2)如果一次函數(shù)y=﹣x+1的圖象與x軸交于點B(n,0),請確定當(dāng)x<n時,對應(yīng)的反比例函數(shù)y=的值的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,某商場有可上行和下行的兩條自動扶梯,扶梯上行和下行的長度相等,運行速度相同且保持不變,甲、乙兩人同時站上了上行和下行端,甲站上上行扶梯的同時又以0.8米/秒的速度往上走,乙站上下行扶梯后則站立不動隨扶梯下行,甲到達(dá)扶梯頂端后立即乘坐下行扶梯(換乘時間忽略不計)同時以0.8米/秒的速度往下走,乙到達(dá)低端后則在原點等候甲,圖②中線段OB、AB分別表示甲、乙兩人在乘坐扶梯過程中,高扶梯底端的路程y(米)與所用時間x(秒)的部分函數(shù)圖象,結(jié)合圖象解答下列問題:
(1)每條扶梯的長度為 米(直接填空);
(2)求點B的坐標(biāo);
(3)乙到達(dá)扶梯底端后,還需等待 秒,甲才到達(dá)扶梯底端(直接填空).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com