分析 (1)連接PC,由三角形的外角性質(zhì)即可得出結(jié)論;
(2)①根據(jù)題意畫(huà)出圖形即可;
②由三角形的外角性質(zhì)即可得出結(jié)論;
(3)分三種情況討論,由三角形的外角性質(zhì)即可得出結(jié)論.
解答 解;(1)∠PEB+∠PDA=90°;理由如下;
連接PC,如圖1所示
∵∠PEB是△PEC的外角,
∴∠PEB=∠3+∠4,
∵∠PDA是△PDC的外角
∴∠PDA=∠1+∠2,
∴∠PEB+∠PDA=∠1+∠2+∠3+∠4=∠C+∠DPE=60°+30°=90°
故答案為:90°;
(2)①如圖2所示;
②連接PC,如圖3所示:
∵∠PEB是△PEC的外角,
∴∠PEB=∠3+∠4,
∵∠PDA是△PDC的外角,
∴∠PDA=∠1+∠2,
∴∠PEB+∠PDA=∠1+∠2+∠3+∠4=∠C+∠DPE=60°+α;
∴∠PEB+∠PDA=60°+α;
(3)分三種情況:
①如圖4所示:
連接PC,
由三角形的外角性質(zhì)得:
∠PEB=∠ACB+∠1+∠2+∠3,∠PDA=∠1+∠2
∴∠PEB-∠PDA=∠ACB+∠3=60°+α;
②如圖5所示:連接PC,
由三角形的外角性質(zhì)得:
∠PEB=∠ACB+∠1+∠2,∠PDA=∠1+∠2+∠3,
∴∠PEB-∠PDA=∠ACB-∠3=60°-α;
③如圖6所示:P、D、E在同一條直線上,連接PC,
由三角形的外角性質(zhì)得:
∠PEB=∠ACB+∠1+∠2,∠PDA=∠1+∠2,
∴∠PEB-∠PDA=∠ACB=60°;
綜上所述:如果點(diǎn)P在線段BA的延長(zhǎng)線上運(yùn)動(dòng),
∠PEB與∠PDA之間的數(shù)量關(guān)系是60°+α或60°-α或60°;
故答案為:60°+α或60°-α或60°.
點(diǎn)評(píng) 本題是三角形綜合題目,考查了三角形的外角性質(zhì)、角之間的數(shù)量關(guān)系;本題綜合性強(qiáng),有一定難度,通過(guò)作輔助線運(yùn)用三角形的外角性質(zhì)是解決問(wèn)題的關(guān)鍵,注意(3)中分類討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com