分析 (1)由FE⊥BE得到∠BEF=90°,則利用等角的余角相等得到∠ABE=∠DEF,則可證明△ABE∽△DEF,得到$\frac{BE}{EF}$=$\frac{AB}{DE}$,由于AE=DE,則$\frac{AB}{BE}$=$\frac{AE}{EF}$,加上∠A=∠BEF,于是可判斷△ABE∽△EBF;
(2)由△ABE∽△DEF得到$\frac{AE}{DF}$=$\frac{AB}{DE}$,即$\frac{DF}{3}$=$\frac{9}{3}$,可計(jì)算出DF=1,所以CF=8,然后在Rt△BCF中,利用勾股定理可得到BF=10,然后根據(jù)正弦的定義求解.
解答 (1)證明:∵FE⊥BE,
∴∠BEF=90°,
∴∠AEB+∠DEF=90°,
而∠AEB+∠ABE=90°,
∴∠ABE=∠DEF,
而∠A=∠D,
∴△ABE∽△DEF,
∴$\frac{BE}{EF}$=$\frac{AB}{DE}$,
∵E是AD的中點(diǎn),
∴AE=DE,
∴$\frac{AB}{AE}$=$\frac{BE}{EF}$,
即$\frac{AB}{BE}$=$\frac{AE}{EF}$,
∵∠A=∠BEF,
∴△ABE∽△EBF;
(2)解:∵△ABE∽△DEF,
∴$\frac{AE}{DF}$=$\frac{AB}{DE}$,即$\frac{DF}{3}$=$\frac{9}{3}$,
∴DF=1,
∵CD=AB=9,
∴CF=8,
在Rt△BCF中,
∵BC=AD=6,CF=8,
∴BF=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∴sin∠CBF=$\frac{CF}{BF}$=$\frac{8}{10}$=$\frac{4}{5}$.
點(diǎn)評(píng) 本題考查了三角形相似的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形;在運(yùn)用相似三角形的性質(zhì)時(shí)主要利用相似比計(jì)算相應(yīng)線段的長(zhǎng)和得到對(duì)應(yīng)角相等.解決(2)的關(guān)鍵是證明△ABE∽△DEF,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com