【題目】下列多邊形中,內角和是外角和的2倍的是(

A.六邊形B.五邊形C.四邊形D.三角形

【答案】A

【解析】

根據(jù)多邊形的內角和公式(n2180°以及多邊形的外角和等于360°列方程求出邊數(shù),從而得解.

解:設多邊形邊數(shù)為n,

由題意得,(n2180°=2×360°,

解得n6

所以,這個多邊形是六邊形.

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知2x+y2,2xy=﹣4,則4x2y2_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由線段AB,CD,DF,BF,CA組成的平面圖形,∠D=28°,則∠A+∠B+∠C+∠F的度數(shù)為( )

A.62°
B.152°
C.208°
D.236°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P3,-2)在平面直角坐標中的(

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料:
問題:如圖1,點A,B在直線l的同側,在直線l上找一點P,使得AP+BP的值最。
小明的思路是:如圖2所示,先作點A關于直線l的對稱點A′,使點A′,B分別位于直線l的兩側,再連接A′B,根據(jù)“兩點之間線段最短”可知A′B與直線l的交點P即為所求.
請你參考小明同學的思路,探究并解決下列問題:

(1)如圖3,在圖2的基礎上,設AA'與直線l的交點為C,過點B作BD⊥l,垂足為D.若CP=1,AC=1,PD=2,直接寫出AP+BP的值;
(2)將(1)中的條件“AC=1”去掉,換成“BD=4﹣AC”,其它條件不變,直接寫出此時AP+BP的值;
(3)請結合圖形,求 的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是(  )

A. 一個三角形中至少有一個角不小于60°

B. 直角三角形只有一條高

C. 三角形的中線不可能在三角形外部

D. 三角形的中線把三角形分成面積相等的兩部分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在國家的宏觀調控下,某市的商品房成交價由今年3月分的5000元/m2下降到5月分的4050元/m2

(1)問4、5兩月平均每月降價的百分率是多少?

(2)如果房價繼續(xù)回落,按此降價的百分率,你預測到7月分該市的商品房成交均價是否會跌破3000元/m2?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關于x的方程x2﹣2x+k=0(k為常數(shù))有兩個不相等的實數(shù)根,那么k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=﹣ x+3和x軸、y軸的交點分別為B、C,點A的坐標是(﹣ ,0),另一條直線經(jīng)過點A、C.

(1)求線段AC所對應的函數(shù)表達式;
(2)動點M從B出發(fā)沿BC運動,速度為1秒一個單位長度.當點M運動到C點時停止運動.設M運動t秒時,△ABM的面積為S.
①求S與t的函數(shù)關系式;
②當t為何值時,S= SABC , (注:SABC表示△ABC的面積),求出對應的t值;
③當t=4的時候,在坐標軸上是否存在點P,使得△BMP是以BM為直角邊的直角三角形?若存在,請直接寫出P點坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案