4.某中學(xué)在一次愛心捐款活動(dòng)中,全體同學(xué)積極踴躍捐款,抽查了九年級(jí)(1)班全班學(xué)生捐款情況,并繪制了如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖:
 捐款(元) 20 50 100 150200 
 人數(shù)(人) 4 12 9 2
求:(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為30人.扇形統(tǒng)計(jì)圖中的m=40,n=30;
(Ⅱ)求學(xué)生捐款數(shù)目的眾數(shù)、中位數(shù)和平均數(shù);
(Ⅲ)若該校有學(xué)生2500人,估計(jì)該校學(xué)生共捐款多少元?

分析 (Ⅰ)把表格中的數(shù)據(jù)相加得出本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù);利用50元,100元的捐款人數(shù)求得占總數(shù)的百分比得出m、n的數(shù)值即可;
(Ⅱ)利用眾數(shù)、中位數(shù)和平均數(shù)的意義和求法分別得出答案即可;
(Ⅲ)利用求得的平均數(shù)乘總?cè)藬?shù)得出答案即可.

解答 解:(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為4+12+9+3+2=30人.
12÷30=40%,9÷30=30%,
所以扇形統(tǒng)計(jì)圖中的m=40,n=30;
(Ⅱ)∵在這組數(shù)據(jù)中,50出現(xiàn)了12次,次數(shù)最多,
∴學(xué)生捐款數(shù)目的眾數(shù)是50;
∵按照從小到大排列,處于中間位置的兩個(gè)數(shù)據(jù)都是50,
∴中位數(shù)為50;
這組數(shù)據(jù)的平均數(shù)=(20×4+50×12+100×9+150×3+200×2)÷30
=2430÷30
=81.
(Ⅲ)2500×81=202500元
答:估計(jì)該校學(xué)生共捐款202500元.

點(diǎn)評(píng) 此題考查扇形統(tǒng)計(jì)圖,用樣本估計(jì)總體,眾數(shù)、中位數(shù)、平均數(shù)的意義與求法,理解題意,從圖表中得出數(shù)據(jù)以及利用數(shù)據(jù)運(yùn)算的方法是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.如圖所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點(diǎn)E,交BC于點(diǎn)F.若BC=10,則CF=$\frac{10}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\frac{1}{a}$-$\frac{1}$=2,則$\frac{ab}{2a+3ab-2b}$的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知一次函數(shù)y=3x-2和y=x+4的圖象分別為直線l1和l2,點(diǎn)A(m,n)在直線l1上,點(diǎn)B(m,h)在直線l2上,試比較n和h的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.計(jì)算100x•100y+1的結(jié)果是( 。
A.100x+y+1B.102x+y+3C.102x+2y+3D.102x+2y+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線y=-$\frac{1}{2}{x^2}$+bx+4上有不同的兩點(diǎn)E(6,-k2+1)和F(-4,-k2+1).
(1)求此拋物線的解析式.
(2)如圖,拋物線y=-$\frac{1}{2}{x^2}$+bx+4與x軸的正半軸和y軸分別交于點(diǎn)A和點(diǎn)B,M為AB的中點(diǎn),∠PMQ=45°,MP交y 軸于點(diǎn)C,MQ交x軸于點(diǎn)D.∠PMQ在AB的左側(cè)以M為中心旋轉(zhuǎn),設(shè)AD的長(zhǎng)為m(m>0),BC的長(zhǎng)為n,求n和m之間的函數(shù)關(guān)系式.
(3)在(2)的條件下,當(dāng)m、n為何值時(shí),∠PMQ的邊過點(diǎn)F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.一次函數(shù),y=kx+b(k、b是常數(shù),k≠0)的圖象如圖所示,則不等式kx+b<0的解集是( 。
A.x>-2B.x>0C.x<-2D.x<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在x軸上,頂點(diǎn)B(4,2)在拋物線y=ax2+bx上,且拋物線交x軸于另一點(diǎn)D(6,0).
(1)則a=-$\frac{1}{4}$,b=$\frac{3}{2}$;
(2)已知E為BC邊上一個(gè)動(dòng)點(diǎn)(不與B、C重合),連結(jié)AE交OB于點(diǎn)P,過點(diǎn)E作y軸的平行線分別交拋物線、直線OB于F、G.
①求線段FG的最大值,此時(shí)△PFG的面積為$\frac{1}{3}$;
②若以點(diǎn)O為圓心,OP為半徑作⊙O,試判斷直線AE與⊙O的能否相切?若能請(qǐng)求出E點(diǎn)坐標(biāo),若不能請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.(1)已知多項(xiàng)式-$\frac{2}{3}$x2ym+1+xy2-2x3+8是六次四項(xiàng)式,單項(xiàng)式-$\frac{3}{5}$x3ay5-m的次數(shù)與多項(xiàng)式的次數(shù)相同,求m,a的值;
(2)已知多項(xiàng)式mx4+(m-2)x3+(2n+1)x2-3x+n不含x2和x3的項(xiàng),試寫出這個(gè)多項(xiàng)式,再求當(dāng)x=-1時(shí)多項(xiàng)式的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案