(2006•河池)如圖,沿AE折疊矩形紙片ABCD,使點(diǎn)D落在BC邊的點(diǎn)F處已知AB=8,BC=10,則tan∠EFC的值為( )

A.
B.
C.
D.
【答案】分析:根據(jù)折疊的性質(zhì)和銳角三角函數(shù)的概念來(lái)解決.
解答:解:根據(jù)題意可得:在Rt△ABF中,有AB=8,AF=AD=10,BF=6,
而Rt△ABF∽R(shí)t△EFC,故有∠EFC=∠BAF,故tan∠EFC=tan∠BAF==
故選A.
點(diǎn)評(píng):本題考查銳角三角函數(shù)的概念:在直角三角形中,正弦等于對(duì)比斜;余弦等于鄰比斜;正切等于對(duì)比鄰.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•河池)如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=-x+6交x軸于點(diǎn)A,交y軸于點(diǎn)B.點(diǎn)P,點(diǎn)Q同時(shí)從原點(diǎn)出發(fā)作勻速運(yùn)動(dòng),點(diǎn)P沿x軸正方向運(yùn)動(dòng),點(diǎn)Q沿OB→BA方向運(yùn)動(dòng),并同時(shí)到達(dá)點(diǎn)A.點(diǎn)P運(yùn)動(dòng)的速度為1厘米/秒.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)當(dāng)點(diǎn)Q運(yùn)動(dòng)到線(xiàn)段BA上時(shí),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x(秒),△POQ的面積為y(平方厘米),那么用x的代數(shù)式表示AQ=______,并求y與x的函數(shù)關(guān)系式;
(3)若將(2)中所得函數(shù)的自變量x的取值范圍擴(kuò)大到任意實(shí)數(shù)后,其函數(shù)圖象上是否存在點(diǎn)M,使得點(diǎn)M與該函數(shù)圖象和x軸的兩個(gè)交點(diǎn)所組成的三角形面積等于△AOB的面積?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省寧波市北侖區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2006•河池)如圖,沿AE折疊矩形紙片ABCD,使點(diǎn)D落在BC邊的點(diǎn)F處已知AB=8,BC=10,則tan∠EFC的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣西河池市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•河池)如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=-x+6交x軸于點(diǎn)A,交y軸于點(diǎn)B.點(diǎn)P,點(diǎn)Q同時(shí)從原點(diǎn)出發(fā)作勻速運(yùn)動(dòng),點(diǎn)P沿x軸正方向運(yùn)動(dòng),點(diǎn)Q沿OB→BA方向運(yùn)動(dòng),并同時(shí)到達(dá)點(diǎn)A.點(diǎn)P運(yùn)動(dòng)的速度為1厘米/秒.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)當(dāng)點(diǎn)Q運(yùn)動(dòng)到線(xiàn)段BA上時(shí),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x(秒),△POQ的面積為y(平方厘米),那么用x的代數(shù)式表示AQ=______,并求y與x的函數(shù)關(guān)系式;
(3)若將(2)中所得函數(shù)的自變量x的取值范圍擴(kuò)大到任意實(shí)數(shù)后,其函數(shù)圖象上是否存在點(diǎn)M,使得點(diǎn)M與該函數(shù)圖象和x軸的兩個(gè)交點(diǎn)所組成的三角形面積等于△AOB的面積?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣西河池市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•河池)如圖,已知AB為⊙O的直徑,⊙O1以O(shè)A為直徑,⊙O的弦AD交⊙O1于點(diǎn)C,BC⊥OD于點(diǎn)E.
(1)求證:BC為⊙O1的切線(xiàn);
(2)若OE=2,求⊙O的半徑及AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案