【題目】已知關于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)證明原方程有兩個不相等的實數(shù)根;

(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.(友情提示:AB=|x1﹣x2|)

【答案】(1)證明見解析;(2)存在,AB有最小值為2

【解析】分析:(1)根據(jù)根的判別式,可得答案;(2)根據(jù)根與系數(shù)的關系,可得A、B間的距離,根據(jù)二次函數(shù)的性質(zhì),可得答案.

本題解析:

(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,

∵(m﹣1)2≥0,

∴△=(m﹣1)2+8>0,

原方程有兩個不等實數(shù)根;

(2)存在,

由題意知x1,x2是原方程的兩根,

∴x1+x2=m﹣3,x1x2=﹣m.

∵AB=|x1﹣x2|,

∴AB2=(x1﹣x22=(x1+x22﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,

當m=1時,AB2有最小值8,

AB有最小值,即AB==2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC為等邊三角形,點D為直線BC上的一動點點D不與B、C重合,以AD為邊作菱形ADEFA、D、E、F按逆時針排列,使DAF=60°,連接CF

1如圖1,當點D在邊BC上時,求證:BD=CF;AC=CF+CD;

2如圖2,當點D在邊BC的延長線上且其他條件不變時,結論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關系,并說明理由;

3如圖3,當點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O為直線AD上一點,∠AOC與∠AOB互補,OMON分別是∠AOC和∠AOB的平分線.

(1) 試說明:∠AOB=∠COD;

(2) 若∠COD36°,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有A型、B型、C型三種不同的紙板,其中A型:邊長為a厘米的正方形;B型:長為a厘米,寬為1厘米的長方形;C型:邊長為1厘米的正方形.

1A2塊,B4塊,C4塊,此時紙板的總面積為 平方厘米;

①從這10塊紙板中拿掉1A型紙板,剩下的紙板在不重疊的情況下,可以緊密的排出一個大正方形,這個大正方形的邊長為 厘米;

②從這10塊紙板中拿掉2塊同類型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個相同的大正方形,請問拿掉的是2塊哪種類型的紙板?(計算說明)

2A12塊,B12塊,C4塊,從這28塊紙板中拿掉1塊紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出三個相同形狀的大正方形,則大正方形的邊長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成20176月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,四邊形ABCD是平行四邊形,E,F是對角線AC上的兩點,AE=CF.

1)求證:四邊形DEBF是平行四邊形;

2)如果AE=EF=FC,請直接寫出圖中2所有面積等于四邊形DEBF的面積的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的頂點分別落在軸、軸正半軸上,點在邊上,點在邊上,且,已知,

1)求點的坐標;

2)點關于點的對稱點為點,點點出發(fā),以每秒1個單位的速度沿射線運動,設點的運動時間為秒,的面積為,用含的代數(shù)式表示

3)在(2)的條件下,點為平面內(nèi)一點,點在線段上運動時,作的平分線交軸于點為何值時,四邊形為矩形?并求此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個結論:①4acb204a+c2b;3b+2c0mam+b+bam≠﹣1),其中正確結論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】書香長沙2019世界讀書日系列主題活動激發(fā)了學生的閱讀興趣,我校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調(diào)查,被調(diào)查學生須從文史類、杜科類、小說類、生活類中選擇自己喜歡的一類,根據(jù)調(diào)查結果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:

1)此次共調(diào)查了   名學生;

2)將條形統(tǒng)計圖補充完整;

3)圖2小說類所在扇形的圓心角為   度;

4)若該校共有學生3000人,估計該校喜歡文史類書籍的學生人數(shù).

查看答案和解析>>

同步練習冊答案