【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P, ACPC,∠COB2PCB

1)求證:PC是⊙O的切線;

2)求證:BCAB;

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB8,求MN·MC的值.

【答案】1)見解析;(2)見解析;(332

【解析】

1)已知C在圓上,故只需證明OCPC垂直即可;根據(jù)圓周角定理,易得∠PCB+OCB=90°,即OCCP;故PC是⊙O的切線;
2AB是直徑;故只需證明BC與半徑相等即可;
3)連接MA,MB,由圓周角定理可得∠ACM=BCM,進(jìn)而可得MBN∽△MCB,故BM2=MNMC;代入數(shù)據(jù)可得MNMC=BM2=8

1)證明:∵OA=OC,   

∴∠A=ACO

又∵∠COB=2A,∠COB=2PCB,  

∴∠A=ACO=PCB

又∵AB是⊙O的直徑   

 ∴∠ACO+OCB=90°

∴∠PCB+OCB=90°

OCCP

OC是⊙O的半徑.   

 ∴PC是⊙O的切線.

2)證明:∵AC=PC,  

∴∠A=P

∴∠A=ACO=PCB=P

又∵∠COB=A+ACO,∠CBO=P+PCB,

∴∠COB=CBO,    

BC=OC

3)解:連接MBMA

∵點(diǎn)M的中點(diǎn),

∴∠ACM=BCM

∵∠ACM=ABM,  

∴∠BCM=ABM

又∵∠BMN=CMB,

∴△MBN∽△MCB

  

又∵AB是⊙O的直徑,

∴∴∠AMB=90°,AM=BM

AB=8,  

  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑的⊙OAB于點(diǎn)D,交BC于點(diǎn)E

(1)求證:BECE;

(2)BD2,BE3,求tanBAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長(zhǎng)”的活動(dòng),并計(jì)劃購置一批圖書,購書前,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:

1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m ,n

2)已知該校共有3600名學(xué)生,請(qǐng)你估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?

3)學(xué)校將舉辦讀書知識(shí)競(jìng)賽,九年級(jí)1班要在本班3名優(yōu)勝者(21女)中隨機(jī)選送2人參賽,請(qǐng)用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列關(guān)系正確的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點(diǎn),已知△DEF的面積為S,則四邊形ABCE的面積為( 。

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線向右平移2個(gè)單位,得到拋物線的圖象是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線平行于y,分別與直線、拋物線交于點(diǎn)A是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值, ______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BCDB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA

2)若AB=12,BM=5,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10

1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;

2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;

3)商場(chǎng)的營銷部結(jié)合上述情況,提出了AB兩種營銷方案

方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25

請(qǐng)比較哪種方案的最大利潤更高,并說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案