分析 (1)由長方形的性質和等腰三角形的性質得出∠ACG=∠AGC,由已知條件得出∠AGC=∠GAF+∠F,得出∠F=∠FAG,∠ACG=2∠ECB,由∠ACB=∠ACG+∠ECB=3∠ECB=60°,即可得出結果;
(2)設△AEF中EF邊上的高為hcm,證出EG=AG=GF,由直角三角形斜邊上的中線性質得出EF=2AG=13(cm),由勾股定理求出AE,由三角形的面積即可得出結果.
解答 解:(1)∵四邊形ABCD是長方形,
∴DF∥BC,
∴∠AFC=∠ECB,
∵AC=AG,
∴∠ACG=∠AGC,
∵∠ACG=2∠GAF,∠AGC=∠GAF+∠F,
∴∠F=∠FAG,
∴∠ACG=2∠ECB,
∴∠ACB=∠ACG+∠ECB=3∠ECB=60°,
∴∠ECB=20°;
(2)設△AEF中EF邊上的高為hcm,
∵∠F=∠FAG,
∴AG=GF,
∵∠BAF=90°,
∴∠EAG+∠GAF=90°,∠AEF+∠EFA=90°,
∴∠EAG=∠AEG,
∴EG=AG=GF,
∴EF=2AG=2×6.5=13(cm),
∴AE=$\sqrt{E{F}^{2}-A{F}^{2}}$=$\sqrt{1{3}^{2}-1{2}^{2}}$=5(cm),
∵△AEF的面積=$\frac{1}{2}$AE•AF=$\frac{1}{2}$EF•h,
解得:h=$\frac{60}{13}$cm,
即△AEF中EF邊上的高為$\frac{60}{13}$cm.
點評 本題考查了矩形的性質、等腰三角形的判定與性質、勾股定理、平行線的性質、直角三角形斜邊上的中線性質、三角形面積的計算方法;熟練掌握矩形和等腰三角形的性質是解決問題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | -2與5 | B. | 6a2mb與-a2mb | C. | 2abc3與-$\frac{5}{6}ba{x}^{2}$ | D. | $\frac{1}{2}$x3y與$\frac{1}{2}$xy3 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com