如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對(duì)稱,連接DB′,AD.

(1)求證:△DOB∽△ACB;

(2)若AD平分∠CAB,求線段BD的長(zhǎng);

(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長(zhǎng).

 


(1)證明:∵DO⊥AB,

∴∠DOB=∠DOA=90°,

∴∠DOB=∠ACB=90°,

又∵∠B=∠B,

∴△DOB∽△ACB;

(2)解:∵∠ACB=90°,

∴AB===10,

∵AD平分∠CAB,DC⊥AC,DO⊥AB,

∴DC=DO,

在Rt△ACD和Rt△AOD中,

,

∴Rt△ACD≌Rt△AOD(HL),

∴AC=AO=6,

設(shè)BD=x,則DC=DO=8﹣x,OB=AB﹣AO=4,

在Rt△BOD中,根據(jù)勾股定理得:DO2+OB2=BD2,

即(8﹣x)2+42=x2

解得:x=5,

∴BD的長(zhǎng)為5;

(3)解:∵點(diǎn)B′與點(diǎn)B關(guān)于直線DO對(duì)稱,

∴∠B=∠OB′D,BO=B′O,BD=B′D,

∵∠B為銳角,

∴∠OB′D也為銳角,

∴∠AB′D為鈍角,

∴當(dāng)△AB′D為等腰三角形時(shí),AB′=DB′,

∵△DOB∽△ACB,

==

設(shè)BD=5x,

則AB′=DB′=5x,BO=B′O=4x,

∵AB′+B′O+BO=AB,

∴5x+4x+4x=10,

解得:x=

∴BD=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線在x軸下方的部分沿x軸翻折,得到一個(gè)新函數(shù)的圖象(圖中的“V形折線”).

(1)類比研究函數(shù)圖象的方法,請(qǐng)列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;

(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點(diǎn)C(1,a),點(diǎn)D是線段AC上一動(dòng)點(diǎn)(不包括端點(diǎn)),過點(diǎn)D作x軸的平行線,與新函數(shù)圖象交于另一點(diǎn)E,與雙曲線交于點(diǎn)P.

①試求△PAD的面積的最大值;

②探索:在點(diǎn)D運(yùn)動(dòng)的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


現(xiàn)有多個(gè)全等直角三角形,先取三個(gè)拼成如圖1所示的形狀,R為DE的中點(diǎn),BR分別交AC,CD于P,Q,易得BP:QR:QR=3:1:2.

(1)若取四個(gè)直角三角形拼成如圖2所示的形狀,S為EF的中點(diǎn),BS分別交AC,CD,DE于P,Q,R,則BP:PQ:QR:RS=  

(2)若取五個(gè)直角三角形拼成如圖3所示的形狀,T為FG的中點(diǎn),BT分別交AC,CD,DE,EF于P,Q,R,S,則BP:PQ:QR:RS:ST= 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列圖形具有穩(wěn)定性的是( 。

 

A.

正方形

B.

矩形

C.

平行四邊形

D.

直角三角形

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,市煤氣公司計(jì)劃在地下修建一個(gè)容積為104m3的圓柱形煤氣儲(chǔ)存室,則儲(chǔ)存室的底面積S(單位:m2)與其深度d(單位:m)的函數(shù)圖象大致是( 。

 

A.

B.

C.

D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在數(shù)軸上表示數(shù)﹣1和2014的兩點(diǎn)分別為A和B,則A和B兩點(diǎn)間的距離為( 。

 

A.

2013

B.

2014

C.

2015

D.

2016

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,下列條件不能判定△ADB∽△ABC的是( 。

 

A.

∠ABD=∠ACB

B.

∠ADB=∠ABC

C.

AB2=AD•AC

D.

=

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.

(1)求證:BE=CE;

(2)試判斷四邊形BFCD的形狀,并說明理由;

(3)若BC=8,AD=10,求CD的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,過點(diǎn)M(﹣3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),則四邊形MAOB的面積為  

查看答案和解析>>

同步練習(xí)冊(cè)答案