【題目】.如圖 1,AB∥CD,直線 EF 交 AB 于點(diǎn) E,交 CD 于點(diǎn) F,點(diǎn) G 在 CD 上,點(diǎn) P在直線 EF 左側(cè),且在直線 AB 和 CD 之間,連接 PE,PG.
(1) 求證: ∠EPG=∠AEP+∠PGC;
(2) 連接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度數(shù).
(3) 如圖 2,若 EF 平分∠PEB,∠PGC 的平分線所在的直線與 EF 相交于點(diǎn) H,則∠EPG 與∠EHG之間的數(shù)量關(guān)系為 .
【答案】(1)見解析;(2)40°;(3) ∠EPG=1800-2∠EHG .
【解析】
(1) 過點(diǎn)作∥,則∥,根據(jù)平行線的性質(zhì)可得, ,從而可證結(jié)論成立;
(2)過點(diǎn)作∥,可證,由平分,可證,從而 ,由∥ 可證,從而 ,結(jié)合,可求出結(jié)論;
(3)由AB∥CD,可證∠BEH=∠EFG,從而∠AEP=180°-2∠EFG①,由三角形外角的性質(zhì)得,∠EFG=∠EHG+∠HGF=EHG+∠CGP②,由①和②可得,∠AEP+∠CGP=180°-2∠EHG,又由(1)知,∠EPG=∠AEP+∠PGC,從而∠EPG=1800-2∠EHG .
(1) 過點(diǎn)作∥,
∵ ∥ ,
∴∥,
∴ , ,
∴ ∠EPG=∠AEP+∠PGC ;
(2)過點(diǎn)作∥,
1
∴ ,
,
∴ ,
∵平分,
∴ ,
∴.
∵ ,
又∵ ∥ ,
∴ ,
即,
∴ ,
∴ .
∵ ,
∴ ,
(3)∠EPG=1800-2∠EHG .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明發(fā)現(xiàn),過點(diǎn)E作EF∥DC,交BC延長(zhǎng)線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).
請(qǐng)回答:BC+DE的值為________
參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點(diǎn)G,AC=BF=DF,求∠AGF的度數(shù)________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三位正整數(shù)M,其各位數(shù)字均不為零且互不相等.若將M的十位數(shù)字與百位數(shù)字交換位置,得到一個(gè)新的三位數(shù),我們稱這個(gè)三位數(shù)為M的“友誼數(shù)”,如:168的“友誼數(shù)”為“618”;若從M的百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字中任選兩個(gè)組成一個(gè)新的兩位數(shù),并將得到的所有兩位數(shù)求和,我們稱這個(gè)和為M的“團(tuán)結(jié)數(shù)”,如:123的“團(tuán)結(jié)數(shù)”為12+13+21+23+31+32=132.
(1)求證:M與其“友誼數(shù)”的差能被15整除;
(2)若一個(gè)三位正整數(shù)N,其百位數(shù)字為2,十位數(shù)字為a、個(gè)位數(shù)字為b,且各位數(shù)字互不相等(a≠0,b≠0),若N的“團(tuán)結(jié)數(shù)”與N之差為24,求N的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,過對(duì)角線BD上任意一點(diǎn)P,作EF∥BC,GH∥AB,下列結(jié)論:①圖中共有3個(gè)菱形;②△BEP≌△BGP;③四邊形AEPH的面積等于△ABD的面積的一半;④四邊形AEPH的周長(zhǎng)等于四邊形GPFC的周長(zhǎng).其中正確的是________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖所示,某公路一側(cè)有A、B兩個(gè)送奶站,C為公路上一供奶站,CA和CB為供奶路線,現(xiàn)已測(cè)得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問:多長(zhǎng)時(shí)間后這個(gè)人距B送奶站最近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長(zhǎng)線(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線段AB上時(shí),求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊三角板的直角頂點(diǎn)重合.
(1)寫出以點(diǎn)C為頂點(diǎn)的相等的角;
(2)若∠ACB=150°,求∠DCE的度數(shù);
(3)寫出∠ACB與∠DCE之間所具有的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示.設(shè)點(diǎn)A,B,C所對(duì)應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn),寫出點(diǎn)A,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)如圖1,在平行四邊形ABCD中,已知點(diǎn)E在AB上,點(diǎn)F在CD上,且AE=CF.求證:DE=BF;
(2)如圖2,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,求∠CDA的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com