在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(diǎn)N(2,-5),過點(diǎn)N作x軸的平行線交此拋物線左側(cè)于點(diǎn)M,MN=6.
(1)求此拋物線的解析式;
(2)點(diǎn)P(x,y)為此拋物線上一動(dòng)點(diǎn),連接MP交此拋物線的對(duì)稱軸于點(diǎn)D,當(dāng)△DMN為直角三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)設(shè)此拋物線與y軸交于點(diǎn)C,在此拋物線上是否存在點(diǎn)Q,使∠QMN=∠CNM ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
【解析】(1)把點(diǎn)M、N的坐標(biāo)點(diǎn)入拋物線,即可求得,a,b
(2)由△DMN為直角三角形,求出點(diǎn)D的坐標(biāo),然后求出直線MD的解析式,即可求得點(diǎn)P的坐標(biāo)
(3)逆向思維,設(shè)存在點(diǎn)Q進(jìn)行解答
解:(1)∵過點(diǎn)M、N(2,-5),,
由題意,得M(,).
∴
解得
∴此拋物線的解析式為. …………………………………2分
(2)設(shè)拋物線的對(duì)稱軸交MN于點(diǎn)G,
若△DMN為直角三角形,則.
∴D1(,),(,). ………………………………………4分
直線MD1為,直線為.
將P(x,)分別代入直線MD1,
的解析式,
得①,②.
解①得 ,(舍),
∴(1,0). …………………………………5分
解②得 ,(舍),
∴(3,-12). ……………………………6分
(3)設(shè)存在點(diǎn)Q(x,),
使得∠QMN=∠CNM.
① 若點(diǎn)Q在MN上方,過點(diǎn)Q作QH⊥MN,
交MN于點(diǎn)H,則.
即.
解得,(舍).
∴(,3). ……………………………7分
② 若點(diǎn)Q在MN下方,
同理可得(6,). …………………8分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com