【題目】如圖,已知:∠AOB=90°,OC平分∠AOB,點(diǎn)P在射線(xiàn)OC上.點(diǎn)E在射線(xiàn)OA上,點(diǎn)F在射線(xiàn)OB上,且∠EPF=90°.
(1)如圖1,求證:PE=PF;
(2)如圖2,作點(diǎn)F關(guān)于直線(xiàn)EP的對(duì)稱(chēng)點(diǎn)F′,過(guò)F′點(diǎn)作FH⊥OF于H,連接EF′,F′H與EP交于點(diǎn)M.連接FM,圖中與∠EFM相等的角共有 個(gè).
【答案】(1)見(jiàn)解析;(2)4.
【解析】
(1)過(guò)P作PG⊥OB于G,PH⊥AO于H,判定△PEH≌△PFG(AAS),即可得出PE=PF;
(2)依據(jù)軸對(duì)稱(chēng)的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到與∠EFM相等的角.
解:(1)如圖1,過(guò)P作PG⊥OB于G,PH⊥AO于H,則∠PGF=∠PHE=90°,
∵OC平分∠AOB,PG⊥OB,PH⊥AO,
∴PH=PG,
∵∠AOB=∠EPF=90°,
∴∠PFG+∠PEO=180°,
又∵∠PEH+∠PEO=180°,
∴∠PEH=∠PFG,
∴△PEH≌△PFG(AAS),
∴PE=PF;
(2)由軸對(duì)稱(chēng)可得,∠EFM=∠EF′M,
∵F′H⊥OF,AO⊥OB,
∴AO∥F′F,
∴∠EF′M=∠AEF′,
∵∠AEF′+∠OEF=∠OFE+∠OEF=90°,
∴∠AEF′=∠OFE,
由題可得,P是FF′的中點(diǎn),EF=EF′,
∴EP平分∠FEF′,
∵PE=PF,∠EPF=90°,
∴∠PEF=45°=∠PEF′,
又∵∠AOP=∠AOB=45°,且∠AEP=∠AOP+∠OPE,
∴∠AEF′+45°=45°+∠OPE,
∴∠AEF′=∠OPE,
∴與∠EFM相等的角有4個(gè):∠EF′M,∠AEF′,∠EFO,∠EPO.
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正六邊形的邊長(zhǎng)為,點(diǎn)從點(diǎn)出發(fā)沿運(yùn)動(dòng)至點(diǎn),點(diǎn)是點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)的點(diǎn).
()點(diǎn)從點(diǎn)運(yùn)動(dòng)至過(guò)程中,下列說(shuō)法正確的有__________.(填序號(hào))
①當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí),線(xiàn)段長(zhǎng)為.
②點(diǎn)沿直線(xiàn)從運(yùn)動(dòng)到.
③點(diǎn)沿圓弧從運(yùn)動(dòng)到.
()點(diǎn)從點(diǎn)運(yùn)動(dòng)至的過(guò)程中,點(diǎn)到的距離的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了獎(jiǎng)勵(lì)在數(shù)學(xué)競(jìng)賽中獲獎(jiǎng)的學(xué)生,買(mǎi)了若干本課外讀物準(zhǔn)備送給他們,如果每人送3本,則剩余8本;如果前面每人送5本,則最后一人得到的課外讀物不足3本,設(shè)該校買(mǎi)了m本課外讀物,有x名學(xué)生獲獎(jiǎng),請(qǐng)解答下列問(wèn)題:
(1)用含x的代數(shù)式表示m;
(2)求出該校的獲獎(jiǎng)人數(shù)及所買(mǎi)課外讀物的本數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA與⊙O相切于點(diǎn)A,過(guò)點(diǎn)A作AB⊥OP,垂足為C,交⊙O于點(diǎn)B.連接PB,AO,并延長(zhǎng)AO交⊙O于點(diǎn)D,與PB的延長(zhǎng)線(xiàn)交于點(diǎn)E.
(1)求證:PB是⊙O的切線(xiàn);
(2)若OC=3,AC=4,求sinE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.
(1)求證:BE∥DF;
(2)若∠ABC=56°,求∠ADF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:①②③中,∠A=42°,∠1=∠2,∠3=∠4,則∠O1+∠O2+∠O3=( 。┒龋
A. 84B. 111C. 225D. 201
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,AD∥BC,要判別四邊形ABCD是平行四邊形,還需滿(mǎn)足條件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com