【題目】長方體的長為20cm,寬為10cm,高為15cm,點(diǎn)B離點(diǎn)C5cm,一只螞蟻如果要沿著長方體的表面從點(diǎn)A爬到點(diǎn)B去吃一滴蜜糖,需要爬行的最短距離是多少?
【答案】需要爬行的最短距離是15cm.
【解析】
首先將長方體沿CF、FG、GH剪開,向右翻折,使面FCHG和面ADCH在同一個(gè)平面內(nèi),連接AB;或?qū)㈤L方體沿DE、EF、FC剪開,向上翻折,使面DEFC和面ADCH在同一個(gè)平面內(nèi),連接AB,或?qū)㈤L方體沿CF、CH、FG剪開,向下翻折,使面HGFC和下面在同一個(gè)平面內(nèi),連接AB,然后分別在Rt△ABD與Rt△ABH與Rt△ABC,利用勾股定理求得AB的長,比較大小即可求得需要爬行的最短路程.
將長方體沿CF、FG、GH剪開,向右翻折,使面FCHG和面ADCH在同一個(gè)平面內(nèi),
連接AB,如圖1,
由題意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,
在Rt△ABD中,根據(jù)勾股定理得:
將長方體沿DE、EF、FC剪開,向上翻折,使面DEFC和面ADCH在同一個(gè)平面內(nèi),
連接AB,如圖2,
由題意得:BH=BC+CH=5+15=20cm,AH=10cm,
在Rt△ABH中,根據(jù)勾股定理得:
則需要爬行的最短距離是15cm.
連接AB,如圖3,
由題意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,
在Rt△AB′B中,根據(jù)勾股定理得:
∵
∴則需要爬行的最短距離是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,杭州某化工廠與A,B兩地有公路,鐵路相連.這家工廠從A地購買一批每噸1000元的原料運(yùn)回工廠,制成每噸8000元的產(chǎn)品運(yùn)到B地.已知公路運(yùn)價(jià)為1.4元/(噸千米),鐵路運(yùn)價(jià)為1.1元/(噸千米),且這兩次運(yùn)輸共支出公路運(yùn)輸費(fèi)14000元,鐵路運(yùn)輸費(fèi)89100元,求:
(1)該工廠從A地購買了多少噸原料?制成運(yùn)往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷售款比原料費(fèi)與運(yùn)輸費(fèi)的和多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,OABC的一個(gè)頂點(diǎn)與坐標(biāo)原點(diǎn)重合,OA邊落在x軸上,且OA=4,OC=2,∠COA=45°.反比例函數(shù)y=(k>0,x>0)的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,連接AC,CD.
(1)試求反比例函數(shù)的解析式;
(2)求證:CD平分∠ACB;
(3)如圖2,連接OD,在反比例的函數(shù)圖象上是否存在一點(diǎn)P,使得S△POC=S△COD?如果存在,請直接寫出點(diǎn)P的坐標(biāo).如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和
(﹣2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明坐在堤邊A處垂釣,河堤AC與水平面的夾角為30°,AC的長為米,釣竿AO與水平線的夾角為60°,其長為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表給出了1班6名學(xué)生的身高情況與全班平均身高的差值(單位:厘米)
學(xué)生 | A | B | C | D | E | F |
身高 | 157 | 162 | 159 | 152 | 163 | 164 |
身高與全班平均身高的差值 | -3 | +2 | -1 | a | +3 | b |
(1)列式計(jì)算表中數(shù)據(jù)a和b
(2)這6名學(xué)生的平均身高與全班學(xué)生的平均身高相比,在數(shù)值上有什么關(guān)系?(通過計(jì)算回答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車100輛,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負(fù)數(shù)):
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?
(2)本周總的生產(chǎn)量是多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)由1~28的連續(xù)整數(shù)排成的“數(shù)陣”.如圖2,用2×2的方框圍住了其中的四個(gè)數(shù),如果圍住的這四個(gè)數(shù)中的某三個(gè)數(shù)的和是27,那么這三個(gè)數(shù)是a,b,c,d中的_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com