【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1yax2+bx1經(jīng)過(guò)點(diǎn)A(2,1)和點(diǎn)B(1,﹣1),拋物線C2y2x2+x+1,動(dòng)直線xt與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M

1)求拋物線C1的表達(dá)式;

2)直接用含t的代數(shù)式表達(dá)線段MN的長(zhǎng);

3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值.

【答案】1yx2+x1;(2MNt2+2;(3t01

【解析】

1)將點(diǎn)A、B的坐標(biāo)代入拋物線表達(dá)式,即可求解;
2)點(diǎn)M、N的坐標(biāo)分別為:(t,2t2+t+1)、(t,t2+t-1),即可求解;
3)分∠ANM=90°、∠AMN=90°兩種情況,分別求解即可.

解:(1)將點(diǎn)AB的坐標(biāo)代入拋物線表達(dá)式得:,解得:,

故拋物線C1的表達(dá)式為:yx2+x1;

2)點(diǎn)M、N的坐標(biāo)分別為:(t,2t2+t+1)、(t,t2+t1),

MN=(2t2+t+1)﹣(t2+t1)=t2+2;

3)①當(dāng)∠ANM90°時(shí),ANMN,

ANt﹣(﹣2)=t+2MNt2+2,

tt2+2,解得:t01(舍去0),故t1

②當(dāng)∠AMN90°時(shí),AMMN,

AMt+2MNt2+2,

解得:t01(舍去1),故t1;

綜上,t01

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】種植草莓大戶張華現(xiàn)有22噸草莓等待出售,有兩種銷售渠道一是運(yùn)往省城直接批發(fā)給零售商,二是在本地市場(chǎng)零售,受客觀因素影響,張華每天只能采用一種銷售渠道,而且草莓必須在10天內(nèi)售出(含10天)經(jīng)過(guò)調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤(rùn)見(jiàn)右表

1若一部分草莓運(yùn)往省城批發(fā)給零售商,其余在本地市場(chǎng)零售,請(qǐng)寫出銷售22噸草莓所獲純利潤(rùn)y(元)與運(yùn)往省城直接批發(fā)零售商的草莓量x(噸)之間的函數(shù)關(guān)系式

2)怎樣安排這22噸草莓的銷售渠道,才使張華所獲純利潤(rùn)最大?并求出最大純利潤(rùn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC10,BC16,點(diǎn)DBC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合).以D為頂點(diǎn)作∠ADE=∠B,射線DEAC邊于點(diǎn)E,過(guò)點(diǎn)AAFAD交射線DE于點(diǎn)F

1)求證:ABCEBDCD;

2)當(dāng)DF平分∠ADC時(shí),求AE的長(zhǎng);

3)當(dāng)△AEF是等腰三角形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AFBD,連接BF

1)求證:DBC的中點(diǎn);

2)若BAAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.

(1)求拋物線的表達(dá)式;

(2)設(shè)拋物線的對(duì)稱軸為l,lx軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)如圖2,連接BC,PB,PC,設(shè)PBC的面積為S.

①求S關(guān)于t的函數(shù)表達(dá)式;

②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D. 點(diǎn)EBC上,EFAB,垂足為F,∠1=2.

(1)試說(shuō)明DGBC的理由;

(2)如果∠B54°,且∠ACD=35°,求的∠3度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綿陽(yáng)某公司銷售統(tǒng)計(jì)了每個(gè)銷售員在某月的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:

設(shè)銷售員的月銷售額為x(單位:萬(wàn)元)。銷售部規(guī)定:當(dāng)x<16時(shí),為不稱職,當(dāng) 時(shí)為基本稱職,當(dāng) 時(shí)為稱職,當(dāng) 時(shí)為優(yōu)秀”.根據(jù)以上信息,解答下列問(wèn)題:

(1)補(bǔ)全折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)求所有稱職優(yōu)秀的銷售員銷售額的中位數(shù)和眾數(shù);

(3)為了調(diào)動(dòng)銷售員的積極性,銷售部決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的銷售員將獲得獎(jiǎng)勵(lì)。如果要使得所有稱職優(yōu)秀的銷售員的一半人員能獲獎(jiǎng),月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元(結(jié)果去整數(shù))?并簡(jiǎn)述其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)轉(zhuǎn)盤被分成等分,每一份上各寫有一個(gè)數(shù)字,隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤次,第一次轉(zhuǎn)到的數(shù)字?jǐn)?shù)字為十位數(shù)字,第二次轉(zhuǎn)到的數(shù)字為個(gè)位數(shù)字,次轉(zhuǎn)動(dòng)后組成一個(gè)兩位數(shù)(若指針停在等分線上則重新轉(zhuǎn)一次)

用畫(huà)樹(shù)狀圖的方法求出轉(zhuǎn)動(dòng)后所有可能出現(xiàn)的兩位數(shù)的個(gè)數(shù).

甲、乙兩人做游戲,約定得到的兩位數(shù)是偶數(shù)時(shí)甲勝,否則乙勝,這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將正方形ABCD按圖1所示置于平面直角坐標(biāo)系中,AD邊與x軸重合,頂點(diǎn)B,C位于x軸上方,將直線lyx3沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度平移,在平移的過(guò)程中,該直線被正方形ABCD的邊所截得的線段長(zhǎng)為m,平移的時(shí)間為t秒,mt的函數(shù)圖象如圖2所示,則ab的值分別是( 。

A.6,B.6,C.7,7D.75

查看答案和解析>>

同步練習(xí)冊(cè)答案