拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:

x-2-1012
y0-4-408

(1)根據(jù)上表填空:
①拋物線與x軸的交點坐標是______和______;
②拋物線經(jīng)過點 (-3,______);
③在對稱軸右側(cè),y隨x增大而______;
(2)試確定拋物線y=ax2+bx+c的解析式.

解:(1)①(-2,0),(1,0);②8;  ③增大 

(2)依題意設(shè)拋物線解析式為y=a(x+2)(x-1),
由點(0,-4)在函數(shù)圖象上,代入得-4=a(0+2)(0-1),
解得:a=2.
∴y=2(x+2)(x-1),
即所求拋物線解析式為y=2x2+2x-4.
故答案為:(-2,0),(1,0);8;增大.
分析:(1)①由表格可知:x=-2及1時,y的值為0,從而確定出拋物線與x軸的交點坐標;
②由x=-1及x=0時的函數(shù)值y相等,x=-2及1時的函數(shù)值也相等,可得拋物線的對稱軸為x=-0.5,由函數(shù)的對稱性可得x=2及x=-3時的函數(shù)值相等,故由x=2對應(yīng)的函數(shù)值可得出x=-3所對應(yīng)的函數(shù)值,從而得出正確答案;
③由表格中y值的變化規(guī)律及找出的對稱軸,得到拋物線的開口向上,在對稱軸右側(cè)為增函數(shù),故在對稱軸右側(cè),y隨x的增大而增大;
(2)由第一問得出拋物線與x軸的兩交點坐標(-2,0),(1,0),可設(shè)出拋物線的兩根式方程為y=a(x+2)(x-1),除去與x軸的交點,在表格中再找出一個點坐標,代入所設(shè)的解析式即可求出a的值,進而確定出函數(shù)解析式.
點評:此題考查了利用待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)最值的求法,以及二次函數(shù)與不等式的關(guān)系,利用了轉(zhuǎn)化及數(shù)形結(jié)合的數(shù)學思想,其中待定系數(shù)法確定函數(shù)解析式一般步驟為:設(shè)出函數(shù)解析式,把圖象上點的坐標代入所設(shè)的解析式,得到方程組,求出方程組的解可得出系數(shù)的值,從而確定出函數(shù)解析式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知點(2,8)在拋物線y=ax2上,則a的值為( 。
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負半軸相交于D.
(1)若拋物線y=ax2+bx+c經(jīng)過B、C、D三點,求此拋物線的解析式,并寫出拋物線與圓A的另一個交點E的坐標;
(2)若動直線MN(MN∥x軸)從點D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點,動點P同時從點C出發(fā),在線段OC上以每秒2個長度單位的速度向原點O運動,連接PM,設(shè)運動時間為t秒,當t為何值時,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的條件下,若以P、C、M為頂點的三角形與△OCD相似,求實數(shù)t的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個點,則它的對稱軸是直線( 。
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標平面內(nèi),O為原點,拋物線y=ax2+bx經(jīng)過點A(6,0),且頂點B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點C,滿足OC=2CB,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
①求直線DC的解析式;
②如點M是直線DC上的一個動點,在x軸上方的平面內(nèi)有另一點N,且以O(shè)、E、M、N為頂點的四邊形是菱形,請求出點N的坐標.(直接寫出結(jié)果,不需要過程.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案