【題目】如圖,在四邊形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四邊形ABCD的面積.
【答案】36.
【解析】試題分析:連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.
解:連接AC,如圖所示:
∵∠B=90°,
∴△ABC為直角三角形,
又∵AB=3,BC=4,
∴根據(jù)勾股定理得:AC==5,
又∵CD=12,AD=13,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2,
∴△ACD為直角三角形,∠ACD=90°,
則S四邊形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×5×12=36.
故四邊形ABCD的面積是36.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a﹣1)x2﹣2x+1=0有兩個不相等的實數(shù)根,則a的取值范圍是( )
A.a>2
B.a<2
C.a<2且a≠l
D.a<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x=1是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的一個根,則2007(a+b+c)=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有筐白菜,以每筐千克為標(biāo)準(zhǔn)重量,超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù)換后的記錄如下: , , , , , , , .回答下列問題上:
(1)這筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重 千克.
(2)與標(biāo)準(zhǔn)重量比較, 筐白菜總計超過多少千克或不足多少千克?
(3)若白菜每千克元,則出售這筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列3×3網(wǎng)格都是由9個相同小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:
(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形。
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△OAB、△OBC、△OCD、△ODE、△OEF和△OFA均為邊長為a的等邊三角形,點P為邊BC上任意一點,過P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)那么∠MPN=______,并求證PM+PN=3a;
(2)如圖2,聯(lián)結(jié)OM、ON.求證:OM=ON;
(3)如圖3,OG平分∠MON,判斷四邊形OMGN是否為特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二孩政策的落實引起了全社會的關(guān)注,某校學(xué)生數(shù)學(xué)興趣小組為了了解本校同學(xué)對父母生育二孩的態(tài)度,在學(xué)校抽取了部分同學(xué)對父母生育二孩所持的態(tài)度進(jìn)行了問卷調(diào)查,調(diào)查分別為非常贊同、贊同、無所謂、不贊同等四種態(tài)度,現(xiàn)將調(diào)查統(tǒng)計結(jié)果制成了如圖兩幅統(tǒng)計圖,請結(jié)合兩幅統(tǒng)計圖,回答下列問題:
(1)在這次問卷調(diào)查中一共抽取了 名學(xué)生,a= %;
(2)請補全條形統(tǒng)計圖;
(3)持“不贊同”態(tài)度的學(xué)生人數(shù)的百分比所占扇形的圓心角為 度;
(4)若該校有3000名學(xué)生,請你估計該校學(xué)生對父母生育二孩持“贊同”和“非常贊同”兩種態(tài)度的人數(shù)之和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com