【題目】已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4 ,求△ABC的面積的最大值.
【答案】
(1)解:∵3bcos A=ccos A+acosC,∴3sinBcos A=sinCcos A+sinAcosC=sin(A+C)=sinB.
sinB≠0,化為:cosA= ,∴sinA= = ,可得tanA= =
(2)解:32=a2=b2+c2﹣2bccosA≥2bc = bc,可得bc≤24,當(dāng)且僅當(dāng)b=c=2 取等號(hào).
∴S△ABC= ≤ =8 .
∴當(dāng)且僅當(dāng)b=c=2 時(shí),△ABC的面積的最大值為8
【解析】(1)由3bcos A=ccos A+acosC,可得3sinBcos A=sinCcos A+sinAcosC,化為:3cosA=1.可得sinA= ,可得tanA= .(2)32=a2=b2+c2﹣2bccosA,再利用基本不等式的性質(zhì)可得bc≤24.利用S△ABC= 即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ,數(shù)列 的前n項(xiàng)和為Sn , 數(shù)列{bn}的通項(xiàng)公式為bn=n﹣8,則bnSn的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE為折痕,使AB的一部分與BC重合,A與BC延長(zhǎng)線上的點(diǎn)D重合,則CE的長(zhǎng)度為( )
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C,D為平面四邊形ABCD的四個(gè)內(nèi)角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,則四邊形ABCD面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓ρ=4cosθ與圓ρ=2sinθ交于O,A兩點(diǎn). (Ⅰ)求直線OA的斜率;
(Ⅱ)過(guò)O點(diǎn)作OA的垂線分別交兩圓于點(diǎn)B,C,求|BC|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為: ,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知直線l1: ,射線 與曲線C的交點(diǎn)為P,l2與直線l1的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”,為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下
年齡 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認(rèn)為以45歲為界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持有差異;
45歲以下 | 45歲以上 | 總計(jì) | |
支持 | |||
不支持 | |||
總計(jì) |
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng),現(xiàn)從這8人中隨機(jī)抽2人. ①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a≥0,函數(shù)f(x)=(x2﹣2ax)ex .
(1)當(dāng)x為何值時(shí),f(x)取得最小值?證明你的結(jié)論;
(2)設(shè)f(x)在[﹣1,1]上是單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2﹣ x﹣2(a≠0)的圖像與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com