【題目】已知:如圖,在ABC中,A=30°,B=60°。

(1)作B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作

法和證明);

(2)連接DE,求證:ADEBDE。

【答案】(1)(2)證明見解析

解析解:(1)作圖如下:

(2)證明:∵∠ABD=×60°=30°,A=30°,∴∠ABD=AAD=BD。

AE=BE,∴△ADE≌△BDE(SAS)。

(1)以B為圓心,任意長為半徑畫弧,交AB、BC于F、N,再以F、N為圓心,大于

FN長為半徑畫弧,兩弧交于點(diǎn)M,過B、M射線,交AC于D,線段BD就是B的平分線

分別以A、B為圓心,大于AB長為半徑畫弧,兩弧交于X、Y,過X、Y直線與AB

交于點(diǎn)E,點(diǎn)E就是AB的中點(diǎn)。

(2)首先根據(jù)角平分線的性質(zhì)可得ABD的度數(shù),而得到ABD=A,根據(jù)等角對(duì)等邊可得

AD=BD,再加上條件AE=BE,即可利用SAS證明ADE≌△BDE。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息解答下列問題:

(1) 課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為____________

(2) 請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖

(3) 該校共有1200名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸的原點(diǎn)為0,點(diǎn)A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)B對(duì)應(yīng)的數(shù)位1,AB=6,BC=2,動(dòng)點(diǎn)P、Q同時(shí)從A、C出發(fā),分別以每秒2個(gè)長度單位和每秒1個(gè)長度單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)
(1)求點(diǎn)A、C分別對(duì)應(yīng)的數(shù);
(2)求點(diǎn)P、Q分別對(duì)應(yīng)的數(shù)(用含t的式子表示)
(3)試問當(dāng)t為何值時(shí),OP=OQ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EFBC于點(diǎn)D , 交AB于點(diǎn)E , 且BEBF , 添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是(  ).

A.BCAC
B.CFBF
C.BDDF
D.ACBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD的面積為128cm2 , 它的兩條對(duì)角線交于點(diǎn)O1 , 以AB、AO1為兩邊鄰作平行四邊形ABC1O1 , 平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2 , 同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2 , …,依此類推,則平行四邊形ABC7O7的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)( 1+( 2×(﹣2)3﹣(π﹣3)0
(2)4xy2(﹣ x2yz3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學(xué)生人數(shù)為40,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中m=10,n=20,表示“足球”的扇形的圓心角是72度;

(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中xOy中,拋物線的頂點(diǎn)在x軸上.

(1)求拋物線的表達(dá)式;

(2)點(diǎn)Q是x軸上一點(diǎn),

①若在拋物線上存在點(diǎn)P,使得∠POQ=45°,求點(diǎn)P的坐標(biāo);

②拋物線與直線y=2交于點(diǎn)E,F(xiàn)(點(diǎn)E在點(diǎn)F的左側(cè)),將此拋物線在點(diǎn)E,F(xiàn)(包含點(diǎn)E和點(diǎn)F)之間的部分沿x軸平移n個(gè)單位后得到的圖象記為G,若在圖象G上存在點(diǎn)P,使得∠POQ=45°,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,m),且m≠0,點(diǎn)B的坐標(biāo)為(n0),將線段AB繞點(diǎn)B旋轉(zhuǎn)90°,分別得到線段B P1,B P2,稱點(diǎn)P1,P2為點(diǎn)A關(guān)于點(diǎn)B伴隨點(diǎn),圖1為點(diǎn)A關(guān)于點(diǎn)B伴隨點(diǎn)的示意圖.

(1)已知點(diǎn)A(0,4),

①當(dāng)點(diǎn)B的坐標(biāo)分別為(10),(-20)時(shí),點(diǎn)A關(guān)于點(diǎn)B伴隨點(diǎn)的坐標(biāo)分別為 ;

②點(diǎn)(x,y)是點(diǎn)A關(guān)于點(diǎn)B伴隨點(diǎn),直接寫出yx之間的關(guān)系式;

(2)如圖2,點(diǎn)C的坐標(biāo)為(-30),以C為圓心, 為半徑作圓,若在⊙C上存在點(diǎn)A關(guān)于點(diǎn)B伴隨點(diǎn),直接寫出點(diǎn)A的縱坐標(biāo)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案