【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長(zhǎng)分別為a,b,c,請(qǐng)你從圖1到圖2,圖2到圖3的變換過(guò)程中,利用幾何圖形的面積關(guān)系,求a,b,c之間的等量關(guān)系式.

【答案】詳見(jiàn)解析

【解析】

由圖1到圖2,通過(guò)證明RtABERtADF,得出,1和圖3面積相等,連接EF,通過(guò)面積相等列式計(jì)算即可得出答案.

解:如圖(2)在RtABERtADF中,,

RtABERtADFHL),

,

.

SABESADF

S正方形ABCDS四邊形AECF

如圖(3),連接EF

S四邊形AECFSAEF+SECFc2+ba)(a+b),

b2c2+ba)(a+b)=c2+b2a2,

2b2c2+b2a2

a2+b2c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)Am6),Bn1)在反比例函數(shù)圖象上,ADx軸于點(diǎn)D,BCx軸于點(diǎn)CDC=5

1)求m,n的值并寫(xiě)出反比例函數(shù)的表達(dá)式;

2)連接AB,E是線段AB上一點(diǎn),過(guò)點(diǎn)Ex軸的垂線,交反比例函數(shù)圖象于點(diǎn)F,若EF=AD,求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),完成下列各題:

將函數(shù)關(guān)系式用配方法化為的形式,并寫(xiě)出它的頂點(diǎn)坐標(biāo)、對(duì)稱軸.

在直角坐標(biāo)系中,畫(huà)出它的圖象

根據(jù)圖象說(shuō)明:當(dāng)取何值時(shí),的增大而增大?

當(dāng)取何值時(shí),?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+3交x軸于A點(diǎn),將一塊等腰直角三角形紙板的直角頂點(diǎn)置于原點(diǎn)O,另兩個(gè)頂點(diǎn)M、N恰落在直線y=x+3上,若N點(diǎn)在第二象限內(nèi),則tan∠AON的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),交y軸于點(diǎn)C;

(1)求拋物線的解析式(用一般式表示);

(2)點(diǎn)Dy軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D使?若存在請(qǐng)直接給出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是線段MN上一動(dòng)點(diǎn),分別以PMPN為一邊,在MN的同側(cè)作△APM,△BPN,并連接BMAN

(Ⅰ)如圖1,當(dāng)PMAPPNBP且∠APM=∠BPN90°時(shí),試猜想BM,AN之間的數(shù)量關(guān)系與位置關(guān)系,并證明你的猜想;

(Ⅱ)如圖2,當(dāng)△APM,△BPN都是等邊三角形時(shí),(Ⅰ)中BM,AN之間的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,試說(shuō)明理由.

(Ⅲ)在(Ⅱ)的條件下,連接AB得到圖3,當(dāng)PN2PM時(shí),求∠PAB度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,PO⊥AB,PE⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)C,切點(diǎn)為E,AEPO于點(diǎn)F.

(1)求證:PEF是等腰三角形;

(2)在圖中,作EH⊥AB,垂足為H,作弦BD∥PC,交EH于點(diǎn)G.若EG=5,sinC=,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一筆直的公路連接MN兩地,甲車從M地駛往N地,速度為60km/h,乙車從M地駛往N地,速度為40km/h,丙車從N地駛往M地,速度為80km/h,三輛車同時(shí)出發(fā),先到目的地的車停止不動(dòng).途中甲車發(fā)生故障,于是停車修理了2.5h,修好后立即按原速駛往N地.設(shè)甲車行駛的時(shí)間為th),甲、丙兩車之間的距離為S1km).甲、乙兩車離M地的距離為S2km),S1t之間的關(guān)系如圖1所示,S2t之間的關(guān)系如圖2所示.根據(jù)題中的信息回答下列問(wèn)題:

1)①圖1中點(diǎn)C的實(shí)際意義是   

②點(diǎn)B的橫坐標(biāo)是   ;點(diǎn)E的橫坐標(biāo)是   ;點(diǎn)Q的坐標(biāo)是   ;

2)請(qǐng)求出圖2中線段QR所表示的S2t之間的關(guān)系式;

3)當(dāng)甲、乙兩車距70km時(shí),請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察與思考:閱讀下列材料,并解決后面的問(wèn)題

在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,過(guò)AADBCD(如圖(1)),則sinB=,sinC=,即ADcsinB,ADbsinC,于是csinBbsinC,即,同理有:,所以

即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.

根據(jù)上述材料,完成下列各題.

(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A   ;AC   ;

(2)自從去年日本政府自主自導(dǎo)“釣魚(yú)島國(guó)有化”鬧劇以來(lái),我國(guó)政府靈活應(yīng)對(duì),現(xiàn)如今已對(duì)釣魚(yú)島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測(cè)得A在我漁政船的北偏西30°的方向上,隨后以40海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得釣魚(yú)島A在的北偏西75°的方向上,求此時(shí)漁政204船距釣魚(yú)島A的距離AB.(結(jié)果精確到0.01,2.449)

查看答案和解析>>

同步練習(xí)冊(cè)答案