如圖所示,△ABC中,∠ACB=90°,AC的垂直平分線DE交AC于D,交AB于E,點F在BC的延長線上,且∠CDF=∠A,求證:四邊形DECF是平行四邊形.

證明:∵DE⊥AC,∠ACB=90°,
∴DE∥FC.
又∵∠CDF=∠A,AD=DC,∠ADE=∠ACF=90°,
∴△ADE≌△DCF.
∴DE=FC.
∴四邊形DECF是平行四邊形.
分析:可先證明DE∥FC,再證△ADE≌△DCF,得DE=FC,根據(jù)一組對邊平行且相等的四邊形是平行四邊形,可得四邊形DECF是平行四邊形.
點評:本題考查了平行四邊形的判定,在應用判定定理判定平行四邊形時,應仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點E,交BC于點F.求證:BF=2CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖所示,△ABC中,∠C=90°,DE垂直平分斜邊AB,分別交AB、AC于D、E,∠CAE:∠EAB=5:2,則∠B=
20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,△ABC中,AB=AC=10,BD是AC邊的高線,DC=2,試求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,△ABC中,BC的垂直平分線交AB于點E,若△ABC的周長為10,BC=4,則△ACE的周長是
6
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,△ABC中,AB=AC,BD⊥AC,垂足為D,求∠DBC與∠A的關系.

查看答案和解析>>

同步練習冊答案