某個(gè)信封上郵政編碼M和N均由0,1,2,3,5,6這六個(gè)不同數(shù)字組成,現(xiàn)有4個(gè)編碼如下:
A、320651 B、105263 C、612305 D、316250
已知編碼A、B、C、D各恰有兩個(gè)數(shù)字的位置與M和N相同,D恰有三個(gè)數(shù)字的位置與M和N相同,試求M和N.
【答案】分析:由已知,編碼A、B、C、D各恰有兩個(gè)數(shù)字的位置與M和N相同,D恰有三個(gè)數(shù)字的位置與M和N相同,逐一進(jìn)行分析,分多種情況推理論證得出.
解答:解:對(duì)于編碼M考慮編碼A中恰有兩個(gè)數(shù)位上的數(shù)字與M中相應(yīng)數(shù)位上的數(shù)字相同,設(shè)這兩位是x1、x2.觀察編碼A、B、C,六個(gè)數(shù)位上的數(shù)都不同,于是B中與M中數(shù)字相同的數(shù)位必異于x1、x2,不妨設(shè)x3、x4,同理C中與M中數(shù)字相同的數(shù)位只能是異于x1、x2,x3、x4,設(shè)為x5、x6.
對(duì)于編碼N也有類似的結(jié)論.
這就是說,在每個(gè)數(shù)位上,A、B、C在該數(shù)位上的數(shù)字中,必有一個(gè)與M在該數(shù)位上的數(shù)字相同.同樣地,也必有一個(gè)與N在該數(shù)位上的數(shù)字相同.
觀察編碼D,它各個(gè)數(shù)位上的數(shù)與A、B、C、相比,只有0,6完全不同,因此,0,6這兩個(gè)數(shù)字必不是M、N,在相應(yīng)數(shù)位上的數(shù)字,于是D、中的3、1、2、5四個(gè)數(shù)字中,只有一個(gè)數(shù)字與M在相應(yīng)數(shù)位上的數(shù)字不同,與N相比,也有類似的結(jié)果.
(1)若3不同,則1,2,5與M相應(yīng)數(shù)位上的數(shù)相同,而個(gè)位不能為0,千位不能為6,因此只有兩個(gè)可能
610253,013256;
(2)若1不同,則3,2,5與M相應(yīng)數(shù)位上的數(shù)相同,同樣個(gè)位上不能為0,千位不能為6,因此只有兩個(gè)可能:
360251,301256;
同樣地,若2不同,也有兩個(gè)可能:
312056,310652;
若5不同,也只有兩個(gè)可能:
315206,310256.
對(duì)上述八種可能進(jìn)行檢驗(yàn),知該信封上的編碼M、N或者同為610253,或者同為310265,或者一個(gè)是610253,另一個(gè)是310265.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是推理與論證.解題的關(guān)鍵是由已知,編碼A、B、C、D各恰有兩個(gè)數(shù)字的位置與M和N相同,D恰有三個(gè)數(shù)字的位置與M和N相同,逐一進(jìn)行分析,分多種情況推理論證.