【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1、O2、O3 , …組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標是( 。

A.(2014,0)
B.(2015,﹣1)
C.(2015,1)
D.(2016,0)

【答案】B
【解析】解:半徑為1個單位長度的半圓的周長為: ,
∵點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,
∴點P1秒走個半圓,
當點P從原點O出發(fā),沿這條曲線向右運動,運動時間為1秒時,點P的坐標為(1,1),
當點P從原點O出發(fā),沿這條曲線向右運動,運動時間為2秒時,點P的坐標為(2,0),
當點P從原點O出發(fā),沿這條曲線向右運動,運動時間為3秒時,點P的坐標為(3,﹣1),
當點P從原點O出發(fā),沿這條曲線向右運動,運動時間為4秒時,點P的坐標為(4,0),
當點P從原點O出發(fā),沿這條曲線向右運動,運動時間為5秒時,點P的坐標為(5,1),
當點P從原點O出發(fā),沿這條曲線向右運動,運動時間為6秒時,點P的坐標為(6,0),
…,
∵2015÷4=503…3
∴A2015的坐標是(2015,﹣1),
故選:B.
根據(jù)圖象可得移動4次圖象完成一個循環(huán),從而可得出點A2015的坐標.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.

當t為何值時,四邊形ABQP是矩形;

當t為何值時,四邊形AQCP是菱形;

分別求出(2)中菱形AQCP的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以O為圓心的弧BD度數(shù)為60°,∠BOE=45°,DA⊥OB,EB⊥OB.

(1)求的值;

(2)若OE與弧BD交于點M,OC平分∠BOE,連接CM.說明CM⊙O的切線;(3)在(2)的條件下,若BC=1,求tan∠BCO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】東門天虹商場購進一批“童樂”牌玩具,每件成本價30元,每件玩具銷售單價x(元)與每天的銷售量y(件)的關(guān)系如下表:

x(元)

35

40

45

50

y(件)

750

700

650

600

若每天的銷售量y(件)是銷售單價x(元)的一次函數(shù)
(1)求y與x的函數(shù)關(guān)系式;
(2)設(shè)東門天虹商場銷售“童樂”牌兒童玩具每天獲得的利潤為w(元),當銷售單價x為何值時,每天可獲得最大利潤?此時最大利潤是多少?
(3)若東門天虹商場銷售“童樂”牌玩具每天獲得的利潤最多不超過15000元,最低不低于12000元,那么商場該如何確定“童樂”牌玩具的銷售單價的波動范圍?請你直接給出銷售單價x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,A,B在數(shù)軸上對應(yīng)的數(shù)分別用a,b表示,且(ab+1002+|a20|=0P是數(shù)軸上的一個動點.

1)在數(shù)軸上標出A、B的位置,并求出A、B之間的距離.

2)已知線段OB上有點C|BC|=6,當數(shù)軸上有點P滿足PB=2PC時,求P點對應(yīng)的數(shù).

3)動點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度第四次向右移動7個單位長度,.點P能移動到與AB重合的位置嗎?若都不能,請直接回答.若能,請直接指出,第幾次移動與哪一點重合?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣1.
(1)求此二次函數(shù)的圖象與x軸的交點坐標;
(2)將y=x2的圖象經(jīng)過怎樣的平移,就可以得到二次函數(shù)y=x2﹣2x﹣1的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的自變量滿足時,函數(shù)值滿足,則該一次函數(shù)解析式為_____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】讀題畫圖計算并作答

畫線段AB=3 cm,在線段AB上取一點K,使AK=BK,在線段AB的延長線上取一點C,使AC=3BC,在線段BA的延長線取一點D,使AD=AB.

(1)求線段BC、DC的長?

(2)K是哪些線段的中點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,地震、泥石流等自然災(zāi)害頻繁發(fā)生,造成極大的生命和財產(chǎn)損失.為了更好地做好“防震減災(zāi)”工作,我市相關(guān)部門對某中學學生“防震減災(zāi)”的知曉率采取隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果分為“非常了解”、“比較了解”、“基本了解”和“不了解”四個等級.小明根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖,請根據(jù)提供的信息回答問題:

(1)本次參與問卷調(diào)查的學生有多少人;扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)的扇形圓心角是多少度;在該校2000名學生中隨機提問一名學生,對“防震減災(zāi)”不了解的概率為多少.
(2)請補全頻數(shù)分布直方圖.

查看答案和解析>>

同步練習冊答案