【題目】下列方程中,兩實數(shù)根之和等于2的方程是( 。

A. x2+2x﹣3=0 B. x2﹣2x+3=0 C. 2x2﹣2x﹣3=0 D. 3x2﹣6x+1=0

【答案】D

【解析】

先根據(jù)根的判別式,判斷有無實數(shù)根的情況,再根據(jù)根與系數(shù)的關(guān)系,逐一判斷即可.

A. x2+2x﹣3=0,
∴△=b-4ac=-8<0,
∴此方程沒有實數(shù)根,
故此選項錯誤;
B. x2﹣2x+3=0 ,
∴△=b-4ac=-8<0,
∴此方程沒有實數(shù)根,
故此選項錯誤;
C. 2x2﹣2x﹣3=0,
∴△=b-4ac=32>0,
∴此方程有實數(shù)根,
根據(jù)根與系數(shù)的關(guān)系可求 ,
故此選項錯誤;
D. 3x2﹣6x+1=0,
=b-4ac=24>0,
∴此方程有實數(shù)根,
根據(jù)根與系數(shù)的關(guān)系可求,
故此選項正確.
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】杭州休博會期間,嘉年華游樂場投資150萬元引進(jìn)一項大型游樂設(shè)施.若不計維修保養(yǎng)費(fèi)用,預(yù)計開放后每月可創(chuàng)收33萬元.而該游樂設(shè)施開放后,從第1個月到第x個月的維修保養(yǎng)費(fèi)用累計為y(萬元),且y=ax2+bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費(fèi)用稱為游樂場的純收益g(萬元),g也是關(guān)于x的二次函數(shù);

(1)若維修保養(yǎng)費(fèi)用第1個月為2萬元,第2個月為4萬元.求y關(guān)于x的解析式;

(2)求純收益g關(guān)于x的解析式;

(3)問設(shè)施開放幾個月后,游樂場的純收益達(dá)到最大;幾個月后,能收回投資?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長方形窗框分成上下兩個長方形,上部分長方形又被分成三個小長方形,其中的四等分點(diǎn)(左側(cè))且.一晾衣桿斜靠在窗框上的位置,中點(diǎn).若,分長方形的左右面積之比為,則分長方形的左右面積之比為________.(用含,的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)D在邊BC上,DEABEDHACH,且滿足DE=DHFAE的中點(diǎn),G為直線AC上一動點(diǎn),滿足DGDF,若AE=4cm,則AG= _____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意結(jié)合圖形填空:

已知:如圖,ADBCDEGBCG,∠E=∠3,試問:AD是∠BAC的平分線嗎?若是,請說明理由.

答:是,理由如下:

ADBC,EGBC___________

∴∠4=∠5=90°___________________________

ADEG________________________________

∴∠1=∠E____________________________

∠2=∠3__________________________________

∵∠E=∠3________________

________________ 等量代換

AD是∠BAC的平分線_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個條件,仍無法判斷四邊形AMCN為菱形的是(

A.AM=AN B.MN⊥AC

C.MN是∠AMC的平分線 D.∠BAD=120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),若平移點(diǎn)到點(diǎn),使以點(diǎn)為頂點(diǎn)的四邊形是菱形,則正確的平移方法是( )

A. 向左平移()個單位,再向上平移1個單位

B. 向左平移個單位,再向下平移1個單位

C. 向右平移個單位,再向上平移1個單位

D. 向右平移2個單位,再向上平移1個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,AD=2,BC=6CD=8,E,F分別是邊ABCD的中點(diǎn), DHBC于點(diǎn)H,連接EH,ECEF,現(xiàn)有下列結(jié)論:①∠CDH=30°;EF=4;③四邊形EFCH是菱形;SEFC=3SBEH.你認(rèn)為結(jié)論正確的有___________.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長線上的一點(diǎn),BE=BA,過EEFAB,F為垂足.下列結(jié)論:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是(   )

A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

同步練習(xí)冊答案